FINITELY GENERATED PROJECTIVE MODULES
AND T-DENSE IDEALS

ALI MOHAMMAD

Al-Najah National University, Nablus, West Bank

Abstract

Let C be a ring with 1 and P be a finitely generated projective right C-module with trace ideal I and $B = \text{End} \ (P_C)$. In this paper we investigate the relation between N and S, where S is the intersection of all left ideals of C not containing I and N is the intersection of all t-maximal left ideals of C.

1. Introduction, Notations and Preliminaries

Throughout this paper C is a ring (with 1), P is a finitely generated projective right C-module with trace ideal I, $B = \text{End} \ (P_C)$, $J = J(B)$ and P is finitely generated as a left B-module.

Given t a left exact radical on A-Mod and M in A-Mod we say that M is t-torsion (t-torsion free) provided that $t(M) = M \ (t(M) = 0)$. A submodule N of M is t-closed if M/N is t-torsion free. A non-zero left A-module M is t-simple if M/N is t-torsion for all submodules N of M such that $N \subsetneq t(M)$. A submodule N of M is t-maximal if M/N is t-simple and t-torsion free. A submodule N of a module M is t-dense if $t(M/N) = M/N$.

Define IM to be the collection of all left ideals M of C such that the trace ideal, I, of P_C is not contained in M, $S = \bigcap M$, IK is the collection of all t-maximal left ideals of C, $N = \bigcap K$ and $C(S) = \{c+S \in C/S: c+S \text{ is regular} \}$.

If X is a subset of a ring R then we define the left annihilator of X, in R, to be $1_{tR} (X) = \{r \in R : r \cdot X = 0 \}$. If $X = \{x\}$ we write $1_{tR} (x)$ for $1_{tR} (\{x\})$.

© 1993 by Yarmouk University, Irbid, Jordan.
A submodule, N, of a module M is said to be small in M if whenever K is a submodule of M such that $K + N = M$, then $K = M$.

In the situation under consideration we have the following facts, the proof of which may be found in (Mohammad, 1987).

Lemma 1.1: The following hold:
1. $J(P_C) = PS$
2. $J(BP) = PN$

If in addition to the hypothesis in the situation under consideration we have B/J is semisimple. Then we have the following:

Proposition 1.2: The following hold:
i. C/S is semisimple.
ii. $I + S = C$

Recall that for a left ideal L of a ring C and $c \in C$, $Lc^{-1} = \{x \in C : x c \in L\}$.

Theorem 1.3: Let P be a finitely generated generator left B-module, $C = \text{End } (B^P)$, $\Phi(S) = \{cL \subseteq_C C : Lc^{-1} \cap C(S) \neq \phi, \text{ for all } c \in C\}$ and $\Phi = \{cL \subseteq_C C : I \subseteq L\}$ is the corresponding idempotent topologizing filter, then the following are equivalent:
1. $I + S = C$
2. $\Phi = \Phi(S)$

The following remark is immediate from Theorem 4.3 proved by Ghazi (1983).

Remark 1.4: For P_A a flat right A-module of type FP and $B = \text{End } (P_A)$ the above mentioned Theorem yields a one-to-one correspondence between the submodules of P (as a left B-module) and the t-closed left ideals of A. In particular, if X is a submodule of P and $D = \{a \in A : Pa \subseteq X\}$ then clearly D is a t-closed ideal of A and $X = PD$.

2. The relation between N and S

In this section we investigation the relation between N and S.

The following lemma is needed.
Lemma 2.1: Given any ring B and three left B modules BX, BY and BW such that $BY + BX = BW$ with BX minimal with respect to $Y + X = W$, then:

i. $X \cap Y$ is small in BX, and

ii. $J(X) = J(W) \cap X$

Proof:

i. Suppose to the contrary that $X \cap Y$ is not small in X then $\exists B X \subsetneq BX$ such that $X \cap Y + X' = X$. Thus $W = Y + X = Y + X \cap Y + X' = Y + X'$, a contradiction to the minimality of X. Hence $X \cap Y$ is small in X.

ii. Since X imbeds in $W (X \hookrightarrow W)$ then any small submodule of X is mapped to a small submodule of W. Thus $J(X) \subseteq J(W) \cap X$. Notice that $W/(X \cap Y) = X/(X \cap Y) \oplus Y/(X \cap Y)$. Now, since the maximal submodules of $W/X \cap Y$ are the maximal submodules of M containing $X \cap Y$ and all the maximal submodules of M contain $X \cap Y (X \cap Y$ is small), then.

$J(W / X \cap Y) = J(W) / (X \cap Y)$. Similarly $J(X/X \cap Y) = J(X) / (X \cap Y)$.

Let $P_1 : W/(X \cap Y) \rightarrow X/(X \cap Y)$ be the projection map, then for $x \in J(W) \cap X$ and $x = x + X \cap Y$ we have $\tilde{x} = x + X \cap Y \in J(X) / (X \cap Y)$, which implies that $x = x_1$ with $x_1 \in J(X)$. Thus $x - x_1 \in X \cap Y$ or $x \in J(X) + X \cap Y = J(X)$.

The following observations are now in place:

1. If $W \in C(S)$, then clearly $Sw \subseteq Cw \cap S$. On the other hand, if $x \in Cw \cap S$ then $x = cw$ and $x \in S$ where $c \in C$. Since $w \in c(S)$ then $c \in S$, thus $x = c w \in Sw$. Thus $Sw = Cw \cap S \forall w \in C(S)$.

2. The same argument above applies to prove that $Sw = Cw \cap N$ for every $w \in C(S)$.

3. Any left ideal of C that contains any $K \in K$ properly has to be an element of Φ, that follows from the definitions.

4. If $Cv = C$ for every $v \in C(S)$ then $S = N$. For if $\exists K \in IK$ such that $S \supsetneq K$, then $K \subsetneq S + K$, thus by (3) above $S + K \in \Phi$. Since $S + K \supseteq S$ also, then $S + K = C = Cv$, thus $1 = s + k$ for some $s \in S$ and $k \in K$ which implies that $S + Ck = C = S + k$. Hence $K \supseteq Ck$ with $k \in C(S)$. Thus $K \supseteq C$, a contradiction.

Theorem 2.2

i. Nv is t-dense in Sv if and only if $c(N + 1t_c(v))$ is t-dense in S.

11
ii. \(Nv \) t-dense in \(Sv \) implies that \(Nv^n \) is t-dense in \(Sv^n \) (\(n \) a positive integer).

Proof:

i. Suppose \(Nv \) is t-dense in \(Sv \), then \(Sv/Nv \) is t-torsion. Thus for every \(a \in I \) and \(x \in S \) we have \(axv = yv \) for some \(y \in N \). That is, for every \(a \in I \) and \(x \in S \), \((ax-y)v = 0\), for some \(y \in N \). Thus \(ax-y \in 1_{tc}(v) \), which implies that \(ax \) is an element of \(N + 1_{tc}(v) \). Thus \(S/(N+1_{tc}(v)) \) is t-torsion and hence \(N + 1_{tc}(v) \) is t-dense in \(S \). Conversely, suppose \(N + 1_{tc}(v) \) is t-dense in \(S \). Since \(\rho_v : S \rightarrow Sv \) is a surjective ring homomorphism with \((N + 1_{tc}(v)) \rho_v = Nv \) then \(\rho_v \) induces \(\hat{\rho}_v : S/(N + 1_{tc}(v)) \rightarrow Sv/Nv \) as a surjective ring homomorphism. Since \(N + 1_{tc}(v) \) is t-dense in \(S \) then \(S/(N + 1_{tc}(v)) \) is t-torsion.

Thus \(Sv/Nv \) is also t-torsion and hence \(Nv \) is t-dense in \(Sv \).

ii. Suppose \(Nv \) is t-dense in \(Sv \). As above \(\rho_v : Sv \rightarrow Sv^2 \) is a surjective ring homomorphism with \(Sv/Nv \) is t-torsion, thus \(Sv^2/Nv^2 \) is t-torsion (\(Nv^2 = \text{Image} \ Nv \) by \(\rho_v \)) and hence \(Nv^2 \) is t-dense in \(Sv^2 \). Now induction on \(n \) completes the proof.

The following two lemmas are needed.

Lemma 2.3: For a bisubmodule \(_B X_C \) of the bimodule \(B^P_C \) such that \(X = PH \) for some left ideal \(H \) of \(C \), we have \(X \text{ Hom}(B^P, B_B) \subseteq J = J(B) \Leftrightarrow H \subseteq S. \)

Proof: If \(X \text{ Hom}(B^P, B_B) \subseteq J \) then
\[X \text{ Hom}(B^P, B_B) P \subseteq JP = PN \text{ with } (X \text{ Hom}(B^P, B_B)) P = X (\text{ Hom}(P_C, C_C)P) = XI = PHI. \]
Thus \(HI \subseteq N \), since \(S + I = C \) then \(HS + HI = H \) with \(HS \) and \(HI \) are subsets of \(S \), thus \(H \subseteq S \).

Conversely, observe first that
\[
(PS) \text{ Hom}(B^P, B_B) = (PS) (\text{ Hom}(P_C, C_C)P) = (PS) I \subseteq P(SI) \subseteq PN = J(B^P). \]
Thus
\[
((PS)\text{ Hom}(B^P, BB))P \text{ Hom}(B^P, B_B) = (PS) \text{ Hom}(B^P, B_B)(P \text{ Hom}(B^P, B_B)) = (PS) \text{ Hom}(B^P, B_B) \subseteq (JP) \text{ Hom}(B^P, B_B) = J(P \text{ Hom}(B^P, B_B) = J(B) = J. \]

Now, \(H \subseteq S \Rightarrow PH \subseteq PH \Rightarrow (PH) \text{ Hom}(B^P, B_B) \subseteq (PS) \text{ Hom}(B^P, B_B) \subseteq J. \)
Thus \(X \text{ Hom}(B^P, B_B) \subseteq J. \)
Lemma 2.4: If BF is projective, B any ring and \(x \in \text{Hom}(BF, BB) \subseteq J \) where \(x \in F \), then \(x \in F \cap J(BF) \).

Proof: Let \(BF + BF' \) be free with basis \(\{X_m\}_M = BU \), say. Since \(ug \in J \) for every \(u \in U \) and every \(g \in U \) and every \(g \in \text{Hom}(BU, BB) \) then \(JF \subseteq JU \). Now \(\text{Hom}(BU, BB) \) includes \(\text{Hom}(BF, BB) \times \text{Hom}(BF', BB) \) hence \(x \in \text{Hom}(BF, BB) \times \text{Hom}(BF', BB) \) is \(x \in JF \subseteq JU \). Thus \(x \in JU \cap F = JF \).

Theorem 2.5:

i. For \(v \in C(S) \), if \(PV \) is minimal with respect to the property that \(PV + PS = P \), then \(NV \) is t-dense in \(SV \).

ii. If \(BF = BX \) with \(BF \) projective and \(X \subseteq PS \), then \(\exists v \in C(S) \) such that \(F = PV \) and \(v \) is t-dense in \(SV \).

Proof:

i. \(I + S = C \) implies that \(1 = s + v \) for some \(s \in C(S) \) and hence \(v + s \) is regular in \(C/S \) which is semisimple. Thus \(v + s \) is a unit which in turn implies that \(CV + S = C \). So, \(mP = P(Cv + S) = PV + PS \).

Since \(PV \) is minimal with respect to \(PV + PS = P \) then by Lemma 2.1 \(J(PV) = J(P) \cap PV \) with \(J(PV) = JPv = PNv \), while \(J(P) \cap PV = Pn \cap PV = Pn \cap PCv = P(N \cap PCv = P(N \cap CV) = PSV \) (by observation 2.). Thus \(PNv = PSV \) and hence \(NV \) is t-dense in \(SV \).

ii. Notice that \(F = PD \) where \(D = \{c \in C : PC \subseteq F\} \). Now \(P(D + S) = PD + PS \) which contains \(F + X = P \). Thus \(P(D + S) = P \), which puts \(D + S \) in \(\phi \). By Theorem 1.3 \((D+S)c^{-1} \cap C(S) \neq \phi \) for every \(c \in C \), thus \((D + S) \cap C(S) \neq \phi \). Hence \(D \cap C(S) \neq \phi \). Let \(v \in D \cap C(S) \), then \(CV + S = C \) and hence \(P(CV + S) = P \), so that \(PV + PS = P \) with \(PV \subseteq F \). Thus \(BF = BPv + BF(S \cap PS) \). Since \(\text{Hom}(BF, BB) \subseteq \text{Hom}(BP, BB) \) then \(F \cap PS \) \(\text{Hom}(BF, BB) \subseteq (F \cap PS) \text{Hom}(BP, BB) \) and the latter is contained in \(J \) by lemma 2.3. Thus by lemma 2.4 \(F \cap PS \subseteq JF \) with \(JF \) small forcing \(PV = f \). Now, \(F \cap PS = PV \cap PS = P(CV \cap S) = PSV \subseteq JPV = PNv \). Thus we have \(PSV \subseteq PNV \subseteq PSV \). Thus \(PSV = PNV \) and the proof is complete.
3: Remark:
1. Suppose that \(Nv \) is \(t \)-dense in \(S \) and let \(w \in D(S) = \{ v \in C(S) : Nv \text{ is } t \text{-dense in } S \} \) be such that \(1tC(w) \) is maximal (among the left annihilators of such \(v \)'s) then \(1tC(w) = 1tC(w^2) \).

2. If \(B \) is a left Noetherian ring, then \(BP \) is Noetherian. Thus \(C \) has ACC on \(t \)-closed submodules. Since \(1tC(X) \) is \(t \)-closed (always) then \(1tC(vn) = 1tC(vn+1) \) for some \(n \in \mathbb{Z}_+ \).

3. We think it is worth mentioning that the case \(I + S \subseteq C \) occurs, and the author produced an example in his Ph.D dissertation (Mohammad, 1987) where he showed that when \(B \) is a field and \(P \) is an infinite dimensional left \(B \)-dimensional left \(B \)-module and \(C = \text{End}_B(P) \) then:
 1. the trace ideal, \(I, \) of \(P_C = \{ c \in C : \text{dim}(Pc) < \infty \} \), and
 2. \(I + S \subseteq C \).

4. The author also proved in his Ph.D dissertation that \(SI \subseteq N \). We point out that if \(IS \subseteq N \) then \(S = N \). The reason for this is that then \(S/N \subseteq C/N \) torsion free while \(S/N \) is torsion, hence \(S/N = 0 \) or \(S = N \).
References

