Quasi B-Open Sets in Bitopological Spaces

Talal Ali Al-Hawary* and Ahmed Al-Omari**

Received on Jan. 7, 2007 Accepted for publication on March 29, 2007

Abstract

Since the notion of generalized closed set in topological spaces have appeared, many topologists have started looking for more general ones and the goal was to find new decompositions of continuity. In this paper, the relatively new notion of quasi-b-open sets is introduced and investigated. Hence, the notion of quasi-b-continuity between bitopological spaces is defined and a decomposition is provided. Moreover, we investigate a group of quasi-b-homeomorphisms and define several new bitopological spaces.

Keywords: B-open set, quasi-b-open set, bitopological space, quasi-b-continuity, group.

2000 AMS Subject Classification: 54C10, 54D10.

1 Introduction

One of the most significant concepts in topology is the notion of b-closed sets that was studied by several authors such as [1, 2, 3]. A subset $A$ of a topological space $(X, \tau)$ is called b-open if $A \subseteq \text{int}(\text{cl}(A)) \cup \text{cl}(\text{int}(A))$, where int() and cl() denote the interior and the closure operations, respectively. The complement of a b-open set is called b-closed. The collection of all b-open (resp., b-closed) sets of $(X, \tau)$ will be denoted by $BO(X)$ (resp., $BC(X)$). The notions of semi-open sets and semi-continuity between topological spaces were studied in [4, 5] and in [6], quasi-semi-open sets were explored. In recent years a number of other generalizations of open sets have been studied, for example [7, 8, 9].

The idea of bitopological spaces was first appeared in [10]. A bitopological space $(X, \tau_1, \tau_2)$ (simply, a space) is a non-empty set $X$ with two topologies $\tau_1$ and $\tau_2$ on $X$. The topological notions of preopen [11] semi-open [4 and $\alpha$-open [9 were generalized to bitopological spaces in [8]. In [7] several other notions of generalized open sets were generalized to bitopological spaces. Analogous to [7,8] and based on the notion of b-open sets in topological spaces, the notion of quasi-b-open set in bitopological spaces is introduced and explored. It is used to generate two new
topological spaces starting from a given bitopological space and to define and study the
notion of quasi-b-continuity in bitopological spaces. Several characterizations and a
decomposition of this type of maps are also provided. Finally as an application, the
group of quasi b-homeomorphism is formed. For the undefined topological concepts in
this paper, we refer the reader to [12, 13].

2 Quasi-b-open sets

In this section, the relatively new notion of quasi-b-open set is introduced and
investigated.

Definition 2.1 A subset $A \subseteq X$ is quasi-b-open in $(X, \tau_1, \tau_2)$ if $A = U \cup V$ for
some $U \in BO(X, \tau_1)$ and $V \in BO(X, \tau_2)$. The complement of a quasi-b-open set
is quasi-b-closed.

By $QBO(X, \tau_1, \tau_2)$ (resp., $QBC(X, \tau_1, \tau_2)$) we denote the class of all
quasi-b-open (resp., quasi-b-closed) subsets of $(X, \tau_1, \tau_2)$. We next recall the
following lemma from [2].

Lemma 2.2 In a topological space:

(i) Arbitrary union of $b$-open sets is $b$-open.

(ii) The intersection of an open set and a $b$-open set is a $b$-open set.

We remark that the intersection of two $b$-open sets need not be $b$-open, see [2].

The proof of the following result follows immediately from Lemma 2.2.

Theorem 2.3 For a space $(X, \tau_1, \tau_2)$:

(i) $BO(X, \tau_i) \subseteq QBO(X, \tau_1, \tau_2)$ holds for all $i \in \{1, 2\}$.

(ii) Arbitrary union of quasi-b-open sets is quasi-b-open.

(iii) If a subset $A$ is open in $(X, \tau_1, \tau_2)$ (i.e., $A \in \tau_1 \cap \tau_2$) and a subset
$B \in QBO(X, \tau_1, \tau_2)$, then $A \cap B \in QBO(X, \tau_1, \tau_2)$.

Definition 2.4 The quasi $b$-closure of a subset $A$ of $(X, \tau_1, \tau_2)$ is defined to be
$qbCl(A) = \cap\{F : F \in QBC(X, \tau_1, \tau_2), A \subseteq F\}$. A subset $A$ of $(X, \tau_1, \tau_2)$ is
quasi-b-generalized closed (simply, quasi-bg-closed) if $qbCl(A) \subseteq U$ whenever
$A \subseteq U$ and $U \in QBO(X, \tau_1, \tau_2)$. The complement of a quasi-b-generalized closed
set is called quasi-b-generalized open (simply, quasi-bg-open).
Quasi B-Open Sets in Bitopological Spaces

Clearly \( x \in qbCl(A) \) if each \( V \in QBO(X, \tau_1, \tau_2) \) containing \( x \) meets \( A \) and \( A \) is quasi-b-closed if and only if \( A = qbCl(A) \).

**Theorem 2.5** If \( A \) is quasi-bg-closed, then \( qbCl(A) - A \) does not contain any nonempty quasi-b-closed subsets.

**Proof** Let \( F \) be a quasi-b-closed subset of \((X, \tau_1, \tau_2)\) such that \( F \subseteq qbCl(A) - A \). Then \( A \subseteq X - F \). Since \( A \) is a quasi-bg-closed set and \( X - F \) is quasi-b-open, then \( qbCl(A) \subseteq X - F \) and so \( F \subseteq X - qbCl(A) \). Therefore \( F \subseteq (X - qbCl(A)) \cap qbCl(A) = \emptyset \) and thus \( F = \emptyset \).

Next, two new operations are given and several of their properties are also provided. It turns out that each operation generates a new set and each collection of these sets forms a topology on the original set.

**Definition 2.6** The quasi-\( \Lambda_b \) and quasi-\( \vee_b \) for a subset \( A \) of \((X, \tau_1, \tau_2)\) are defined to be

\[
\Lambda_{qb}(A) = \bigcap \{G : A \subseteq G, G \in QBO(X, \tau_1, \tau_2)\}
\]

\[
\vee_{qb}(A) = \bigcup \{F : F \subseteq A, F \in QBC(X, \tau_1, \tau_2)\}.
\]

\( A \) is called \( \Lambda_{qb} \) (resp. \( \vee_{qb} \))-set if \( \Lambda_{qb}(A) = A \) (resp. \( \vee_{qb}(A) = A \)).

**Lemma 2.7** For subsets \( A, B \) and \( A_i \) of \((X, \tau_1, \tau_2)\) where \( i \in I \), the following properties hold:

1. \( A \subseteq \Lambda_{qb}(A) \).
2. If \( A \subseteq B \), then \( \Lambda_{qb}(A) \subseteq \Lambda_{qb}(B) \).
3. If \( A \in QBO(X, \tau_1, \tau_2) \), then \( A = \Lambda_{qb}(A) \).
4. \( \Lambda_{qb}(\cap\{A_i : i \in I\}) \subseteq \cap\{\Lambda_{qb}(A_i) : i \in I\} \)
5. \( \Lambda_{qb}(X \setminus A) = X \setminus \vee_{qb}(A) \).
6. \( \Lambda_{qb}(\Lambda_{qb}(A)) = \Lambda_{qb}(A) \).
7. \( \Lambda_{qb}(\cup\{A_i : i \in I\}) = \cup\{\Lambda_{qb}(A_i) : i \in I\} \).
Proof: (1), (2), (3), (4) and (5) are immediate consequences of Definition 2.6. We only prove (6) and (7).

(6) By Definition 2.6, \( \Lambda_{qb}(A) \subseteq \Lambda_{qb}(\Lambda_{qb}(A)) \). For the converse, let \( x \notin \Lambda_{qb}(A) \). Then there exists \( G \in QBO(X, \tau_1, \tau_2) \) such that \( A \subseteq G \) and \( x \notin G \). Since

\[
\Lambda_{qb}(\Lambda_{qb}(A)) = \cap \{ G : \Lambda_{qb}(A) \subseteq G, G \in QBO(X, \tau_1, \tau_2) \},
\]

we have \( x \notin \Lambda_{qb}(\Lambda_{qb}(A)) \). Thus by contrapositive, \( \Lambda_{qb}(\Lambda_{qb}(A)) \subseteq \Lambda_{qb}(A) \). Therefore (6) holds.

(7) Let \( A = \bigcup \{ A_i : i \in I \} \). By (2) and since \( A_i \subseteq A \), \( \Lambda_{qb}(A_i) \subseteq \Lambda_{qb}(A) \) for all \( i \in I \) and so \( \bigcup \{ \Lambda_{qb}(A_i) : i \in I \} \subseteq \Lambda_{qb}(A) \). To prove the converse inclusion, let \( x \notin \bigcup \{ \Lambda_{qb}(A_i) : i \in I \} \). Then for each \( i \in I \) there exists \( G_i \in QBO(X, \tau_1, \tau_2) \) such that \( A_i \subseteq G_i \) and \( x \notin G_i \). If \( G = \bigcup \{ G_i : i \in I \} \), then \( G \in QBO(X, \tau_1, \tau_2) \) with \( A \subseteq G \) and \( x \notin G \). Hence \( x \notin \Lambda_{qb}(A) \). Thus by contrapositive, \( \Lambda_{qb}(A) \subseteq \bigcup \{ \Lambda_{qb}(A_i) : i \in I \} \). Therefore (7) holds. ■

The proof of the following result follows by a similar manner to that of Lemma 2.7 and thus omitted.

Lemma 2.8 For subsets \( A, B \) and \( A_i \) of \( (X, \tau_1, \tau_2) \) where \( i \in I \), the following properties hold:

(1) \( \forall_{qb}(A) \subseteq A \).

(2) If \( A \subseteq B \), then \( \forall_{qb}(A) \subseteq \forall_{qb}(B) \).

(3) If \( A \in QBC(X, \tau_1, \tau_2) \), then \( A = \forall_{qb}(A) \).

(4) \( \forall_{qb}(\cap \{ A_i : i \in I \}) = \cap \{ \forall_{qb}(A_i) : i \in I \} \).

(5) \( \forall_{qb}(\forall_{qb}(A)) = \forall_{qb}(A) \).

(6) \( \cup \{ \forall_{qb}(A_i) : i \in I \} \subseteq \forall_{qb}(\cup \{ A_i : i \in I \}) \).
Theorem 2.9  In a space \((X, \tau_1, \tau_2)\), the class of all \(\Lambda_{qb}\) (resp., \(\vee_{qb}\))-sets is a topological space.

Proof  We only prove the \(\Lambda_{qb}\) case. It is obvious from Definition 2.6 that \(X\) and \(\emptyset\) are \(\Lambda_{qb}\)-sets. Let \(A\) and \(B\) be quasi-\(\Lambda_{b}\)-sets, then \(\Lambda_{qb}(A) = A\) and \(\Lambda_{qb}(B) = B\). Thus by Lemma 2.2, 
\[
\Lambda_{qb}(A \cap B) \subseteq \Lambda_{qb}(A) \cap \Lambda_{qb}(B) = A \cap B \subseteq \Lambda_{qb}(A \cap B).
\]
Hence \(A \cap B\) is a \(\Lambda_{qb}\)-set. Finally, let \(\{A_i : i \in I\}\) be a family of \(\Lambda_{qb}\)-set in \((X, \tau_1, \tau_2)\) and 
\[
A = \cup \{A_i : i \in I\}.
\]
Then by Lemma 2.7, we have 
\[
\Lambda_{qb}(A) = \cup \{\Lambda_{qb}(A_i) : i \in I\} = \cup \{A_i : i \in I\} = A.
\]

The following example is given in details as it will be needed throughout the rest of this paper.

Example 2.10  Let \(X = \{a, b, c, d\}\), \(\tau_1 = \{X, \emptyset, \{a, b\}, \{b\}, \{b, c\}\}\) and \(\tau_2 = \{X, \emptyset, \{b\}\}\). Then 
\[
(1) \quad QBO(X, \tau_1, \tau_2) = \{X, \emptyset, \{b\}, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, \{a, c, d\}\}.
\]
\[
(2) \quad \text{The set of all } \Lambda_{qb}\text{-sets is } \{X, \emptyset, \{b\}, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, \{a, c, d\}\}.
\]
\[
(3) \quad \text{The set of all } \vee_{qb}\text{-sets is }\{X, \emptyset, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{c, d\}, \{a, c, d\}\} \cup \{A \subseteq X : b \in A\}.
\]

Definition 2.11  A subset \(A\) of \((X, \tau_1, \tau_2)\) is called \(\lambda_{qb}\)-closed if \(A = L \cap F\), where \(L\) is a \(\Lambda_{qb}\)-set and \(F\) is quasi-\(b\)-closed. The complement of a \(\lambda_{qb}\)-closed is \(\lambda_{qb}\)-open.

In Example 2.10, every subset of \(X\) is a \(\lambda_{qb}\)-closed set.
Theorem 2.12 For a subset $A$ of $(X, \tau_1, \tau_2)$, the following are equivalent:

(i) $A$ is $\lambda_{qb}$-closed.

(ii) $A = L \cap qbCl(A)$ for some $\Lambda_{qb}$-set $L$ in $(X, \tau_1, \tau_2)$.

(iii) $A = \Lambda_{qb}(A) \cap qbCl(A)$.

Proof (1) $\Rightarrow$ (2): Let $A = L \cap F$ where $L$ is a $\Lambda_{qb}$-set and $F$ is quasi-b-closed. Since $F = qbCl(F)$, $A \subseteq L \cap qbCl(A) \subseteq L \cap qbCl(F) = A$ and thus the result is obtained.

(2) $\Rightarrow$ (3): Since $A \subseteq \Lambda_{qb}(A) \subseteq L$ and $A \subseteq qbCl(A)$, we have $A \subseteq \Lambda_{qb}(A) \cap qbCl(A) \subseteq L \cap qbCl(A) = A$.

Hence $A = \Lambda_{qb}(A) \cap qbCl(A)$.

(3) $\Rightarrow$ (1): Since $\Lambda_{qb}(A)$ is a quasi- $\Lambda_{qb}$-set and $qbCl(A)$ is quasi-b-closed, $A$ is a $\lambda_{qb}$-closed set.

The following is a relatively new notion of generalized closed sets that will be used to find a characterization for quasi-bg-closed sets in Theorem 2.14.

The proof of the following result follows from definitions.

Lemma 2.13 Every quasi-b-closed is both quasi-bg-closed and $\lambda_{qb}$-closed. Moreover, a subset $A$ of $(X, \tau_1, \tau_2)$ is quasi-bg-closed if and only if $qbCl(A) \subseteq \Lambda_{qb}(A)$. 

Quasi B-Open Sets in Bitopological Spaces

In Example 2.10, the class of all quasi-b-closed sets is quasi-bg-closed

**Theorem 2.14** A subset $A$ of $(X, \tau_1, \tau_2)$ is quasi-b-closed if and only if $A$ is quasi-bg-closed and $\lambda_{qb}$-closed.

**Proof** Since every quasi-b-closed set is quasi-bg-closed and $X$ is a $\Lambda_{qb}$-set, then $A = X \cap A$ is $\lambda_{qb}$-closed.

Conversely by Lemma 2.13, $qbCl(A) \subseteq \Lambda_{qb}(A)$ and $A$ is $\lambda_{qb}$-closed. Then by Theorem 2.12, $A = \Lambda_{qb}(A) \cap qbCl(A) = qbCl(A)$ and hence $A$ is quasi-b-closed. ■

3 Quasi b-spaces.

In this section, we introduce several new classes of bitopological spaces; namely quasi-b-$T_0$, $T_1$, $T_2$ and $T_\infty$ spaces. We show that the class of quasi-b-$T_2$ spaces is stronger than that of quasi-b-$T_1$ spaces which is stronger than the class of quasi-b-$T_\infty$, while the class of quasi-b-$T_0$ is the weakest one. Moreover, several characterizations of these spaces are provided.

**Definition 3.1** A space $(X, \tau_1, \tau_2)$ is quasi-b-$T_0$ if for every two distinct points $x, y$ of $X$, there exists $A \in QBO(X, \tau_1, \tau_2)$ such that $(x \in A$ and $y \notin A)$ or $(x \notin A$ and $y \in A)$.

**Definition 3.2** A space $(X, \tau_1, \tau_2)$ is quasi-b-$T_1$ if every quasi-bg-closed set is quasi-b-closed.

**Definition 3.3** A space $(X, \tau_1, \tau_2)$ is quasi-b-$T_2$ if for every two distinct points $x, y$ of $X$, there exist $A, B \in QBO(X, \tau_1, \tau_2)$ such that each set contains one and only one element of $x$ and $y$.

**Definition 3.4** A space $(X, \tau_1, \tau_2)$ is quasi-b-$T_\infty$ if for every two distinct points $x, y$ of $X$, there exist disjoint sets $A, B \in QBO(X, \tau_1, \tau_2)$ such that $x \in A$ and $y \in B$.

The proofs of the following two results, in which quasi-b-$T_0$ and quasi-b-$T_1$ spaces are characterized, are straightforward and thus omitted.
Theorem 3.5 For a space \((X, \tau_1, \tau_2)\), the following are equivalent:

(i) \(X\) is quasi-b-\(T_0\).

(ii) For every two distinct points \(x, y\) of \(X\), there exists

\[ A \in QBO(X, \tau_1, \tau_2) \cup QBC(X, \tau_1, \tau_2) \] such that \(x \in A\) and \(y \notin A\).

Separation axioms stand among the most common and to a certain extent the most important and interesting concepts in topology. One of the most well-known low separation axiom is the one which requires that singletons are closed. Analogously for the case of bitopological spaces, we have the following result:

Theorem 3.6 A space \((X, \tau_1, \tau_2)\) is

(i) quasi-b-\(T_0\) if and only if for every two distinct points \(x\) and \(y\) of \(X\)

\[ q_{\text{bCl}}\{x\} \neq q_{\text{bCl}}\{y\} . \]

(ii) quasi-b-\(T_1\) if and only if singletons are quasi-b-closed.

Next, we characterize quasi-b-\(T_0\) via \(\lambda_{\text{qb}}\) -closed notion.

Theorem 3.7 For a space \((X, \tau_1, \tau_2)\), the following are equivalent:

(i) \(X\) is quasi-b-\(T_0\).

(ii) Every singleton is \(\lambda_{\text{qb}}\) -closed.

Proof (i) \(\Rightarrow\) (ii): Let \(x \in X\). By Theorem 3.5 for each \(x \neq y\), there exists

\[ A_y \in QBO(X, \tau_1, \tau_2) \cup QBC(X, \tau_1, \tau_2) \] such that \(x \in A_y\) and \(y \notin A_y\). Set

\[ L = \cap \{A_y \in QBO(X, \tau_1, \tau_2) : y \neq x\} \]

and \(A = \cap \{A_y \in QBC(X, \tau_1, \tau_2) : y \neq x\}\). Then \(L\) is a \(\Lambda_{\text{qb}}\) -set, \(A\) is quasi-b-closed and \(\{x\} = L \cap A\) or \(\{x\} = L\) or \(\{x\} = A\). In all cases, \(\{x\}\) is \(\lambda_{\text{qb}}\) -closed.

(ii) \(\Rightarrow\) (i): Let \(x, y\) be two distinct points of \(X\). By (ii), \(\{x\} = L \cap A\) where \(L\) is a \(\Lambda_{\text{qb}}\) -set and \(A\) is a quasi-b-closed set. If \(y \notin A\), then \(X - A\) is a quasi-b-open set contains \(y\) but not \(x\). If \(y \notin L\), then \(y \notin A_y\) for some quasi-b-open set \(A_y\) containing \(x\). Thus \(X\) is quasi-b-\(T_0\). \(\blacksquare\)
Quasi B-Open Sets in Bitopological Spaces

In Example 2.10, every singleton is $\lambda_{qb}$-closed and thus $(X, \tau_1, \tau_2)$ is quasi-b-$T_0$.

**Theorem 3.8** For a space $(X, \tau_1, \tau_2)$, the following are equivalent:

1. $(X, \tau_1, \tau_2)$ is quasi-b-$T_\frac{1}{2}$.
2. Every singleton $\{x\}$ is quasi-b-open or quasi-b-closed.
3. Every subset is $\lambda_{qb}$-closed.

**Proof** (1) $\Rightarrow$ (2) Let $x \in X$. If $\{x\}$ is not quasi-b-closed, then $X - \{x\}$ is not quasi-b-open. Since $X$ is the only quasi-b-open set containing $X - \{x\}$, $\{x\}$ is quasi-bg-closed. As $(X, \tau_1, \tau_2)$ is quasi-b-$T_\frac{1}{2}$, $X - \{x\}$ is quasi-b-closed and thus $\{x\}$ is quasi-b-open.

(2) $\Rightarrow$ (3) Let $A$ be a subset of $X$. By assumption, every singleton $\{x\}$ is quasi-b-open or quasi-b-closed. Let $(X \setminus A)_{QBO} = \{x \in X \setminus A : \{x\} \in QBO(X, \tau_1, \tau_2)\}$, $B = X \setminus (A \cup (X \setminus A)_{QBO})$ and $L = \cap\{X \setminus \{x\} : x \in B\}$. Then $L$ is a $\Lambda_{qb}$-set, $F = \cap\{X \setminus \{x\} : x \in (X \setminus A)_{QBO}\}$ is a quasi-b-closed set and $A = L \cap F$. Therefore $A$ is $\lambda_{qb}$-closed.

(3) $\Rightarrow$ (1) Let $A$ be a quasi-bg-closed set. By assumption and Theorem 2.14, $A$ is quasi-b-closed. Therefore $(X, \tau_1, \tau_2)$ is quasi-b-$T_\frac{1}{2}$. ■
In Example 2.10, every subset is $\lambda_{qb}$-closed and thus $(X, \tau_1, \tau_2)$ is quasi-$b-T_{\frac{1}{2}}$.

**Corollary 3.9** For a space $(X, \tau_1, \tau_2)$, the following are equivalent:

(i) $X$ is quasi-$b-T_{\frac{1}{2}}$.

(ii) Every generalized $\Lambda_{qb}$-set is $\Lambda_{qb}$-set.

**Theorem 3.10** (i) Every quasi-$b-T_{\frac{1}{2}}$ space is quasi-$b-T_1$.

(ii) Every quasi-$b$-$T_i$ space is quasi-$b$-$T_{\frac{1}{2}}$ for $i = \frac{1}{2}, 1$.

**Proof** (i) follows from Definition 3.3 and Definition 3.4, while quasi-$b-T_1$ space is quasi-$b-T_{\frac{1}{2}}$ follows by combining Theorem 3.6 and Theorem 3.8 together. Let $(X, \tau_1, \tau_2)$ be a quasi-$b-T_{\frac{1}{2}}$ space. We shall prove that for any two distinct points $x, y \in X$, $qbCl\{x\} \neq qbCl\{y\}$. By Theorem 3.8, we have the following three cases:

Case 1. $\{x\}$ and $\{y\}$ are quasi-$b$-closed sets. Then $\{x\} = qbCl\{x\} \neq qbCl\{y\} = \{y\}$.

Case 2. $\{x\}$ is $\tau_i$-b-open and $\{y\}$ is quasi-$b$-closed, where $i \in \{1, 2\}$. Since a $\tau_i$-b-open set is quasi-$b$-open, $x \notin qbCl\{y\} = \{y\}$ and hence $qbCl\{x\} \neq qbCl\{y\}$.

Case 3. $\{x\}$ is $\tau_i$-b-open and $\{y\}$ is $\tau_j$-b-open where $i, j \in \{1, 2\}$. Since $\{x\}, \{y\} \in QBO(X, \tau_1, \tau_2)$, we have $x \notin qbCl\{y\}$ and hence $qbCl\{x\} \neq qbCl\{y\}$.

In all cases we have $qbCl\{x\} \neq qbCl\{y\}$. Therefore $(X, \tau_1, \tau_2)$ is a quasi-$b$-$T_0$ space.

**Conjecture 3.11** A quasi-$b$-$T_{\frac{1}{2}}$ space need not be a quasi-$b$-$T_1$ space as shown next, while we leave it as an open question to find an example of a quasi-$b$-$T_0$ space that is not a quasi-$b$-$T_{\frac{1}{2}}$ space and another one of a quasi-$b$-$T_1$ space that is not a quasi-$b$-$T_2$ space.

If our conjecture is true, the converses of all parts of Theorem 3.3 will not be true.
Example 3.12 Let \( X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}\} \) and \( \tau_2 = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\} \). Clearly, \( BO(X, \tau_1) = BO(X, \tau_2) = QBO(X, \tau_1, \tau_2) = \tau_2 \). Thus \( (X, \tau_1, \tau_2) \) is a quasi-b-\( T_{\frac{1}{2}} \) space that is not quasi-b-\( T_1 \).

4 Quasi-b-homeomorphisms group

In this section, we investigate a group of quasi-b-homeomorphisms on a bitopological space. We begin by defining the notion of quasi-b-homeomorphisms.

Definition 4.1 A map \( f : (X, \tau_1, \tau_2) \rightarrow (Y, J_1, J_2) \) is quasi-b- (resp., \( \lambda_{qb} \)-, quasi-bg-) continuous if the inverse image of every \( V \in J_1 \cup J_2 \) is quasi-b-open (resp., \( \lambda_{qb} \)-open, quasi-bg-open) set.

Clearly, a map \( f : (X, \tau_1, \tau_2) \rightarrow (Y, J_1, J_2) \) is quasi-b- (resp., \( \lambda_{qb} \)-, quasi-bg-) continuous if the inverse image of every closed subset with respect to \( J_1 \) or \( J_2 \) is quasi-b-closed (resp., \( \lambda_{qb} \)-closed, quasi-bg-closed) set. Note that if \( \tau_1 = \tau_2 \) and \( J_1 = J_2 \), then quasi-b-continuity implies quasi-continuity in topological spaces. Theorem 2.14 provides the following immediate decomposition of quasi-b-continuity in bitopological spaces:

Theorem 4.2 A map \( f : (X, \tau_1, \tau_2) \rightarrow (Y, J_1, J_2) \) is quasi-b-continuous if and only if \( f \) is \( \lambda_{qb} \)-continuous and quasi-bg-continuous.

Proof Let \( f : (X, \tau_1, \tau_2) \rightarrow (Y, J_1, J_2) \) be quasi-b-continuous and \( V \) be a closed subset with respect to \( J_1 \) or \( J_2 \). Then \( V \) is quasi-b-closed. Thus by Theorem 2.14, \( V \) is quasi-bg-closed and \( \lambda_{qb} \)-closed. Hence \( f \) is both quasi-bg-continuous and \( \lambda_{qb} \)-continuous.

Conversely, let \( f \) be quasi-bg-continuous and \( \lambda_{qb} \)-continuous and \( V \) be a closed subset with respect to \( J_1 \) or \( J_2 \). Then \( f^{-1}(V) \) is quasi-bg-closed and \( \lambda_{qb} \)-closed. Hence by Theorem 2.14, \( f^{-1}(V) \) is quasi-b-closed. Therefore, \( f \) is quasi-b-continuous. ■

Definition 4.3 A map \( f : (X, \tau_1, \tau_2) \rightarrow (Y, J_1, J_2) \) is called quasi-b-irresolute if the inverse image of every quasi-b-open set is a quasi-b-open set.

Definition 4.4 A bijection \( f : (X, \tau_1, \tau_2) \rightarrow (Y, J_1, J_2) \) is called quasi-b-homeomorphism (simply, quasi-bh) if both \( f \) and \( f^{-1} \) are quasi-b-irresolute maps.
Definition 4.5 For a space \((X, \tau_1, \tau_2)\) and a subset \(H\) of \(X\),
\[
\text{quasi-bh}(X, H, \tau_1, \tau_2) \quad \text{is the set of all maps } f : (X, \tau_1, \tau_2) \rightarrow (X, \tau_1, \tau_2) \quad \text{such that } f \text{ is a quasi-b-homeomorphism and } f(H) = H.
\]
and \(\text{quasi-bh}(X, \tau_1, \tau_2)\) is defined to be \(\text{quasi-bh}(X, \phi, \tau_1, \tau_2)\).

Clearly, the binary operation
\[
\beta : \text{quasi-bh}(X, \tau_1, \tau_2) \times \text{quasi-bh}(X, \tau_1, \tau_2) \rightarrow \text{quasi-bh}(X, \tau_1, \tau_2)
\]
is well defined by \(\beta(f, g) = g \circ f\) for every \(f\) and \(g \in \text{quasi-bh}(X, \tau_1, \tau_2)\).

Theorem 4.6 \(\text{quasi-bh}(X, \tau_1, \tau_2)\) is a group and \(\text{quasi-bh}(X, H, \tau_1, \tau_2)\) is a subgroup of \(\text{quasi-bh}(X, \tau_1, \tau_2)\) for every \(H \subset X\).

Proof. Clearly the this operation is associative. Let \(f\) and \(g\) be elements in \(\text{quasi-bh}(X, \tau_1, \tau_2)\). Then \(f, f^{-1}, g\) and \(g^{-1}\) are quasi-b-irresolute. Hence \(g \circ f\) and \((g \circ f)^{-1}\) are quasi-b-irresolute maps. Thus this operation is closed. Since the identity map is quasi-b-irresolute, it belongs to \(\text{quasi-bh}(X, \tau_1, \tau_2)\) and it is the identity element in this set. Moreover for any \(f\) in \(\text{quasi-bh}(X, \tau_1, \tau_2)\), \(f^{-1}\) is quasi-b-irresolute and hence \(f^{-1}\) belongs to \(\text{quasi-bh}(X, \tau_1, \tau_2)\). Therefore, \(\text{quasi-bh}(X, \tau_1, \tau_2)\) is a group with this binary operation.

Since \(\text{quasi-bh}(X, H, \tau_1, \tau_2) \subset \text{quasi-bh}(X, \tau_1, \tau_2)\), it remains to show that for any \(f, g \in \text{quasi-bh}(X, H, \tau_1, \tau_2)\), \(g \circ f^{-1} \in \text{quasi-bh}(X, H, \tau_1, \tau_2)\). But if
\[
f, g \in \text{quasi-bh}(X, H, \tau_1, \tau_2), \quad \text{then } f, f^{-1}, g \text{ and } g^{-1} \text{ are quasi-b-irresolute maps that map } H \text{ into } H. \quad \text{Hence } g \circ f^{-1} \text{ and } f \circ g^{-1} \text{ are quasi-b-irresolute maps. Moreover, } g \circ f^{-1}(H) = g(H) = H. \quad \text{Therefore } \text{quasi-bh}(X, H, \tau_1, \tau_2) \text{ is a subgroup of } \text{quasi-bh}(X, \tau_1, \tau_2) \text{ for every } H \subset X. \]

Acknowledgments

The authors would like to thank the referees for useful comments and suggestions.
Quasi B-Open Sets in Bitopological Spaces

References


Al-Hawary and Al-Omari

