The Approximation of the Geometric Distribution by Gamma Distribution

Khaled Aludaat *

Received on March 27, 2005
Accepted for publication on July 7, 2005

Abstract

The geometric distribution has a property similar to that of the non-aging or "Markovian" property of the exponential distribution

\[P(X = x + k / X \geq k) = P(X = x) \]

Also the geometric distribution is a discrete analogue of the exponential distribution.

My work is to find a suitable continuous exponential distribution to approximate the geometric distribution.

Introduction:

A geometric progression is a sequence of values each of which after the first is obtained by multiplying the preceding one by a constant value called the common ratio.

Example: \(e^{-x}, e^{-2x}, e^{-3x}, \ldots \) with \(e^{-x} \) as a common ratio

The sum of these values

\[S = \sum_{i=1}^{\infty} e^{-xi} = \frac{e^{-x}}{1 - e^{-x}} \]

The sequence of values: \(p, pq, pq^2, \ldots \) is also a geometric with a common ratio \(q \).

Let \(T = \sum_{x=1}^{\infty} pq^{x-1} = \frac{p}{1 - q} \)

If \(T = S \) term wise then \(p = e^{-x}, pq = e^{-2x}, \ldots \Rightarrow p = e^{-x} = q \Rightarrow p = q \)

© 2005 by Yarmouk University, Irbid, Jordan.

* Department of Statistics, Yarmouk University, Irbid, Jordan.
So the best approximation of S by T when $p = q$ and $p + q = 1$ \Rightarrow $p = \frac{1}{2}$

Let X be a geometric random variable with probability of success p.

$X: G(p)$

$P(X = x) = g(x) = pq^{x-1}$ $x = 1, 2, 3, \ldots$

What are the possible values of p to approximate the geometric distribution by the Gamma distribution?

The following table gives us some indications where we take $p = \frac{1}{\alpha}$ $\alpha = 1, 2, 3, \ldots$

as the probability of success for the geometric distribution.

Let us have the two probability densities for Gamma and geometric, respectively:

$h(x) = \frac{1}{\Gamma(\alpha)} x^{\alpha-1} e^{-x}$ $x > 0,$

$g(x) = \frac{1}{\alpha} \left(\frac{x-1}{\alpha} \right)^{\alpha-1}$ $x = 1, 2, 3, \ldots$

<table>
<thead>
<tr>
<th>α</th>
<th>$E(x) = \alpha \beta$</th>
<th>$\sigma_x^2 = \alpha \beta^2$</th>
<th>$\frac{E(x)}{p} = \frac{1}{p}$</th>
<th>$\sigma_x^2 = \frac{q}{p^2}$</th>
<th>The mode of x_α at $x = 1$</th>
<th>The mode of x_α at $x = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>$\alpha(\alpha - 1)$</td>
<td>n-1</td>
<td>1</td>
</tr>
</tbody>
</table>
The approximation of the geometric distribution by Gamma distribution

From this table we can conclude that the family of Gamma distributions for $\beta = 1$ only, and the family of geometric distributions have the same mean $\frac{1}{p} = \alpha$ but their variances are proportional such that $\sigma^2_x = (\alpha - 1)\sigma^2_\alpha$, $\forall \alpha \geq 3$

But the two distributions are very close together at $\alpha = 2$

References