الكشف الكمي عن الهيدروكاربونات العضوية متعددة الحلقات (Tilletia Caries) في المنطقة المصابة بالفطر

مثنى شنجل، ورحاب ماجد كبا، وشيماء خالد داود، وحسن هادي عبدهلة

تاريخ إستلام البحث: 2003/12/22
تاريخ قبوله: 2004/5/22

ملخص

المركبات العضوية متعددة الحلقات (PAH's) في الغاز الماء للكائنات الحية وفي النفايات المت древة من مداخن الصناعة و في النفايات الخفية والتوابع الخفية المت древة. وسبب ما ما ما تمثل هذه المركبات من فعالية بيولوجية وقابلية للتسبب بالاززاء السرطانية تم التأكد من ونوات حماية البيئة الدولية من الدراسات الدورانية والكمية من أجل تعيين وتشخيص هذه المركبات في البيئة وتجربتها. تم في هذا البحث دراسة النسب التوزيعية لمراكبات (Tilletia Indicia) في نماذج من المنطقة الملوثة بالفطر PAH's البشري. تبين من خلال العلاقة لثلاث مينات من الحبيبة الملوثة واعتماد أسبلين قياسي في العملية ضمن الاستخلاص الإيجابي (Soxhlet Extraction) باستخدام مصدر الاقطاع (ثنائي كلوروبين) و من السرعة HPLC و TLC و UV و للمحلول المستخلص بطريقة الاقطاع، و من ثم تجميع نماذج PAH's ل焗 العينة عند 380 درجة مئوية النتائج المشكلة هذه تحتوي على مركبات قدرة سرطانية والمبهرة في مركبات PAH's المعروفة بفعالية سرطانية ومجموع تراكيب (33.91 ppm) المصاحبة (0.1) (2.5ppm) Accumplthene (14.03 ppm) Accumplthene (التي يتميز بفعالية سرطانية عالية) الأمر الذي يؤکد بأن هذه النماذج غير صالحة للاستهلاك البشري أو الحيوي.
تشمل وكبة داوود وعبدالله

المقدمة.

(بوليسيكل أروماتيك هيدروكربونات) (PAH's)

بمعدل المركبات السلبية المتعددة الطبقات (PAH's) صلباً واسعاً الاستشارة ومن ثم قسم من المركبات العضوية التي تتكون من اقتران حلقات هيدروكربونية متعددة (سمادية أو خماسية أو سباعية ... الخ مع بعضها) (شكل 1). و يمكن ان تكون هذه المركبات متجانسة (مُؤلفة من ذرات كربون وهيدروجين فقط) أو غير متجانسة (بياناها على ذرة أو أكثر من ذرات هجينة تحل محل ذرات الكربون والتي تكون عادة أما تتراوح بين أوكسجين أو أوكسجين أو كربون) [1].

و تمثل المركبات السلبية (Toxic Effects) و ورازية [2,3]. إذ اكتشف العالم (Kemmaway) في عام 1930 أنه بالإمكان أحداً طفرات وراثية (الذي تم إجراء التجربة على حيوانات) باستخدام المركب Dibenz(a,h)anthracene مختبرية) بواسطة المركب Dibenz(a,h)anthracene (الذي صنف كونه أول مركب كيميائي يسبب الإصابة بالسرطان [4]. و في عام 1933 تم عزل المركب (Benza(a)pyrene) الأكثر سمها. كما أن المركبات الأخرى القابلة لاحترس طفرات وراثية (Mutagenicity) قد افترض بأن هذه المركبات تتحول إلى مركبات قابلة للانتصاب مع مكونات الخلية ليفعل تأثيرها الوراثي [5]. و في عام 1970 تبين بان الأشكال (Electrophilic Agents) للعامة لمجموعة المواد الكيميائية المسرطنة هي مركبات باحثة عن الإلكترونات (Nucleophilic) بأشكالها الإحترس مع مكونات الخلية ذات الطبيعة الباحثة عن النواة (Nucleophile) [6]. وقد تنافل الكثير من الباحثين هذا الموضوع باقتصار كبير. و في عام 1982 تم دراسة موسمية وشاملة أشتملت على تقاطع لمجمل العوامل المؤثرة في إمكانية حدوث الإصابة بالأورام السرطانية و تحت تأثير الملوثات البيئية (PAH's).

الوساط البيئية لانتشار مركبات PAH's

ينظر إلى الملوثات البيئية، حيث تتفاوت ومستويات هامة في الهواء الذي لل инвести ونوات الرياضة ومن المركبات التي تتكون خطورة على صحة الإنسان اتباع العديد من الباحثين إلى تعيين نفسها في تأثير بيئة لدى الهواء (10-12) والترابية (11) والجاهز (12) الملاحة الطبيعية أو المياه الناتجة من العمليات الصناعية (15-12,19). و تكون مركبات PAH's تمتاز بتأثيرها السلبي و كما ذكر سابقاً في صحة الكائن الحي و تسببها بأحداث الطفرات الوراثية و الإصابة
الكشف الكيميائي عن الهيدروكربونات العضوية متعددة الحلقات في الحزمة المصابة بالقطر

شكل 1. الصور الكيميائية لبعض المركبات العضوية متعددة الحلقات.
Instruments:

- High Performance Liquid Chromatography (HPLC) (Shimadzu LC-6A, Kyoto, Japan)
- UV-Visible Recording (Shimadzu UV-160 Spectrophotometer)

Table: Time vs. % CH3CN

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>% CH3CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>40 ml</td>
</tr>
<tr>
<td>5</td>
<td>40 ml</td>
</tr>
<tr>
<td>30</td>
<td>100 ml</td>
</tr>
<tr>
<td>45</td>
<td>100 ml</td>
</tr>
</tbody>
</table>

Cornstarch column (5 μm, 25 cm x 4.6 mm) was used for the separation. The mobile phase was methanol-water (40:60) at a flow rate of 1 ml/min. The detection wavelength was 254 nm.
الكشف الكمي عن الهيدروكربونات العطرية متعددة الحلقات في الخلطة المصابة بالفطر

المواد الكيميائية المستخدمة:

<table>
<thead>
<tr>
<th>الجهة المصدرة</th>
<th>اسم المادة</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluka-Switzerland</td>
<td>1- مركبات القياسية (ستة عشر مركب)</td>
</tr>
<tr>
<td>BDH chemicals Ltd. Poole England</td>
<td>N, N-Dimethyl Formamide (DMF)</td>
</tr>
<tr>
<td>BDH chemicals Ltd. Poole England</td>
<td>2- ذئب</td>
</tr>
<tr>
<td>BDH chemicals Ltd. Poole England</td>
<td>Cyclohexane</td>
</tr>
<tr>
<td>BDH chemicals Ltd. Poole England</td>
<td>3- ذئب الهكسان الحلكي</td>
</tr>
<tr>
<td>BDH chemicals Ltd. Poole England</td>
<td>Dichloromethane (DCM)</td>
</tr>
<tr>
<td>BDH chemicals Ltd. Poole England</td>
<td>4- ذئب ثنائي كلوروميثان</td>
</tr>
<tr>
<td>Anhydrous Sodium Sulphate</td>
<td>5- كبريتات الصوديوم اللامعية</td>
</tr>
</tbody>
</table>

تعدين مركبات PAH's في نماذج لخلطة ملوئة بالفطريات (Tilletia)

انصبتي التحاليل على ثلاث عينات من الخلطة الأولى والثانية بوزن (7.5 gm) من الخلطة المطحونة والثالثة بوزن (5.0 gm) من الخلطة غير المطحونة (شكل 2). وقد عُولجت العينات الثلاث من خلال عملية الاستخلاص للمركبات العطرية بسائل ثنائي كلوروميثان (DCM) بمقدار 40 ml (يفضل). استخلصت المركبات العطرية بسائل ثنائي كلوروميثان (PAH's) وذلك لاستكشاف جودة إنتاج الألوان. واستخدام جهاز الاستخلاص الجاف (Sokhlet). وقد استمرت عملية الاستخلاص لكل عينة 3 ساعات متواصلة لتجفيف المحلول خلالها. لون أي أصغر بباختصار. تم جمع المحلول المستخلص وأخذت منه عينة بحجم 5 ml (مقطع 1) لقياس القياس الطيفي (مقطع 2). تم التحليل بأسلاوب: كروماتوغرافيا الطيفية (UV-Vis) والروبية (HPLC) وكروماتوغرافيا السائل عالي الداء (TLC). أما المستفيق من المحلول المستخلص فقد تم تبخير المذيب منه (ChCl) تمامًا واعيته أتربة في 10 ml من الهكسان الحلكي وتحصيل على (مقطع II) وتتم استعداد القياسات الطيفية وعمليات الفصل والحصول على (مقطع II) من هذا المحلول. 다소

شكل 2. صورة كروماتوغرافية لخلطة ملوئة بالفطر تيليتيا و أخرى غير ملوئة.
لقد تم التعامل مع المحلول المستخلص والمركز لمركبات (PAH's) المذابة في الهكسان (1ml) (DMF: Water-Cyclohexane) الحلقي بأسلوب تنقية من خلال استخلاص سريع (尝). تم إуй محلول مركبات (PAH's) المستخلص بطريقة انتقائية للكشف عن المركبات العطرية عادة [22]. ثم أخذ محلة مركبات (PAH's) قسم إلى قسمين: الأولى وهو بمقدار (2 ml) حفظ على شكل (مقطر III). أما القسم الثاني وهو المتبقى من محلول الاستخلاص فتم تبخيره وإذاته بالهكسان حلقي (مقطر IV). وأجريت القياسات الطيفية والتحليل للمقاطع (IV-III) وفقًا لتحليل النماذج السابقة.

ويمكن توضيح طريقة العمل ككل بالخطوات الآتية:

- وزن معلوم للعينة:

 40ml (DCM)

- استخلاص الراجحي / 15hr

- محلول الاستخلاص

 لتركيز وإبالة بـ 10 هكسان حلقي

 يعزل منه (5 ml) مقطع I

 التنقية بطريقة الاستخلاص DMF: H2O

 يعزل منه 2 ml مقطع II

 تبخير وإبالة بالهكسان الحلقي مقطع III

 يعزل منه 2 ml

 تبخير وذابة بالهكسان الحلقي مقطع IV

(Tillettia) مخطط توضيحي لاستخلاص المركبات (PAH's) في نماذج المنطقة الملوثة بالقطرات.
اكتشف الكمية المكورة من الهيدروكاربونات العطرية متعددة الحلقات في الخطيئة المصابة بالقفر

وقد تم إعادة عملية الاستخلاص والتحليل ثلاث مرات لعينات الخطيئة المطحونة A1 و A2 وغير المطحونة B3. وتم اعتماد مخطط التحليل السابق مع الرجوع إلى المصادر [22-17]. استخدمت الظروف التجريبية المبينة في أعلاه لفصل وتحليل (16) مركب قياسي من مركبات PAHs للحصول على مخطط الفصل الخاص بها والاستفادة منه في عملية المقايضة والحصر على النتائج PAHs المستخلصة من العينات المقدمة.

النتائج والمناقشة.

أعطت قياسات طيف الأشعة المرئية وفوق البنفسجية لجميع مقاطع العزل I-IV والعينات A1-a3 أطيافًا مشابهة من حيث الاختلافات الموجبة وشكل الحزام المطبق وأن اختلافات في شدة أنتقاصها تحكم اختراعها في تراكز المركبات المستخلصة فيها (شكل 3) ويتبين الشكل الاستخلاصي حتى الأطوال الموجبة 340-490 nm والذي يوجد عدة إلى الفترات متعددة الحلقات. وتشير النتائج أن هذا الطيف المزمن حتى لحلول DMF+H2O المجاورة على العينات بعد الاستخلاص.

(شكل 3): طيف الاستخلاص الجزيئي لمقتراحي الاستخلاصين In1, In2 الناتجين من استخلاص الحلقات الصغيرة، بالنسبة للقنص ميثان (A) واعدة الاستبالة المستخلصة بالهكسان الحالق (B).
ولم تتم محاولة الكشف باستخدام الأشعة السينية التقليدية (TLC) نتيجة واضحة بسبب انخفاض التراكيز كما يُبين، حيث أن هذه تتشكل للتراكيز الكبيرة عادة. أما الفصل بجمال (HPLC) فقد كان ناجحاً واعطى عند حقن قطعات من المحاليل في الجهاز مما جدّد متابعة في قيم زمن احترازها وتسجيل امكالاً مع قيم فصل وازمان احتراز لعينات دقيقة واسعة (Authentic Samples) لستة عشر مركباً عشوياً متعدد الحلقات (جدول -1).

(جدول 1):

النوعية الكيميائية لمركبات PAH’s وزمان احترازها كما عُدِّيت في نماذج الحلقة الملوثة من خلال المقارنة مع عينات قياسية باستخدام HPLC.

<table>
<thead>
<tr>
<th>No.</th>
<th>Compound</th>
<th>R_t (standard) (min)</th>
<th>R_t (Test) (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Naphthalene</td>
<td>11.73</td>
<td>11.68</td>
</tr>
<tr>
<td>2</td>
<td>Acenaphthylene</td>
<td>14.04</td>
<td>14.17</td>
</tr>
<tr>
<td>3</td>
<td>Acenaphthene</td>
<td>16.16</td>
<td>16.13</td>
</tr>
<tr>
<td>4</td>
<td>Fluorene</td>
<td>16.98</td>
<td>16.55</td>
</tr>
<tr>
<td>5</td>
<td>Phenanthrene</td>
<td>18.31</td>
<td>18.21</td>
</tr>
<tr>
<td>6</td>
<td>Anthracene</td>
<td>19.5</td>
<td>20.4</td>
</tr>
<tr>
<td>7</td>
<td>Fluoranthene</td>
<td>20.92</td>
<td>20.27</td>
</tr>
<tr>
<td>8</td>
<td>Pyrene</td>
<td>21.73</td>
<td>21.82</td>
</tr>
<tr>
<td>9</td>
<td>Benzo(a) pyrene</td>
<td>29.29</td>
<td>29.58</td>
</tr>
<tr>
<td>10</td>
<td>Dibenz(a,h) anthracene</td>
<td>32.1</td>
<td>32.18</td>
</tr>
<tr>
<td>11</td>
<td>Benzo(ghi) Perylene</td>
<td>32.68</td>
<td>32.76</td>
</tr>
<tr>
<td>12</td>
<td>Indeno (1, 2, 3, cd) pyrene.</td>
<td>33.44</td>
<td>33.45</td>
</tr>
</tbody>
</table>

وكما يبدو من الجدول (1) فإن أزمان الاحتفاج لمركبات PAH’s قد أُنْتِهِت بسُبَّة (40-10) دقيقة، فتمكن التعرف على نوعية المركبات المفصلة للمواطن الموجودة بلائحة المقارنة مع تلك المركبات القياسية. وكذلك أُعِيِّن التحليل حزماً أخرى ذات أزمان احترازية أقل من الأولي (9-10 دقيقة) يمكن أن تُنَتِسِب إلى نواحي الكساد الكيميائية لمركبات PAH’s (كحولات وكيفيات وابروكسيدات ... الخ) لها زمن احتراز أقصى بسبب حقيقة أنها نسبًا وسريعة مرورها في الموارد ذات القليلة المستعمل. وهي

-122-
الكشف الكمي عن الهيدروكربونات المطرية ميتعددة الحلقات في الحلقة المصابية بالفطر

مركبات ذات فعالية سرطانية أعلى بالعادة من تلك للمركبات ميتعددة الحلقات (لم تتمكن من التشخيص المفصل لهذه المركبات بعد، سوف نوفر مزيدًا منها لدينا). ويمكن التعرف على آثار الجرعات للمركبات المفصولة بجهاز (HPLC) من خلال الإطلاق على الشكل (4).

(شَكل 4): مخطط الفصل بجهاز HPLC لمركبات PAH المستخلصة من نماذج الحلقة الملوثة بعنصر كلور وميناء والمذابة بالهكسان الحلقي.

وقد تم الحصول على نفس مخططات الفصل لجهاز HPLC (HPLC) ولجميع مقاطع العزل. والمهم ان (Selective Extraction) المستخلصات الانتقائي الموافق للمركبات مع DMF+H2O ومن ثم الهكسان الحلقي. أعطى الحزم ذاتها. ونقيب أوضح اختبار مطالب لعينات الأصلية (جدول -1) (مع ذلك توجد بعض الاختلافات في حالة الاستخلاص بالطريقة الانتقائية المذكورة عن ما هو عليه الحال عند الاستخلاص بمذيب كلورور ميثان، ويعزى ذلك إلى الاختلاف في الانتقائية الطريقيتين) فقد امكن من خلال المقارنة بته تصنيف هذه المركبات الكيميائية وتميزها.
(جدول 2): تراكز مركبات PAH’s في نماذج النحل المستخدمة في HPLC.

<table>
<thead>
<tr>
<th>No.</th>
<th>Compound</th>
<th>Concentration (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Naphthalene</td>
<td>3.40</td>
</tr>
<tr>
<td>2</td>
<td>Acenaphthylene</td>
<td>14.03</td>
</tr>
<tr>
<td>3</td>
<td>Acenaphthene</td>
<td>8.60</td>
</tr>
<tr>
<td>4</td>
<td>Fluorene</td>
<td>3.00</td>
</tr>
<tr>
<td>5</td>
<td>Phenanthrene</td>
<td>0.20</td>
</tr>
<tr>
<td>6</td>
<td>Anthracene</td>
<td>0.30</td>
</tr>
<tr>
<td>7</td>
<td>Fluoranthene</td>
<td>1.40</td>
</tr>
<tr>
<td>8</td>
<td>Pyrene</td>
<td>1.50</td>
</tr>
<tr>
<td>9</td>
<td>Benzo(a) Pyrene</td>
<td>0.08</td>
</tr>
<tr>
<td>10</td>
<td>Dibenzo (a,h) anthracene</td>
<td>0.20</td>
</tr>
<tr>
<td>11</td>
<td>Benzo (ghi) perylene</td>
<td>0.70</td>
</tr>
<tr>
<td>12</td>
<td>Indeno (1, 2, 3-cd) pyrene</td>
<td>0.50</td>
</tr>
</tbody>
</table>

أما التقدير الكمي لأصناف المركبات التي تم فصلها (جدول 2) فقد تم اعتباره على مساحة القمة للمركبات المفصلة كما هو معرف من مساحة القمة تناسب طردياً مع تراكز كل مكون مفصل، علماً أنه تم اختيار النقط نقاط في مساحة القمة المتناوبة في PAH’s النباتي من بين مجموعة من مساحات نقاط عديدة حيث تم استخدام المخطط المطلوب للقطع (II2) من أجل الحصول على القيم التكرارية المبينة في الجدول أعلاه.

يتبين من القيم المثبتة في (جدول 2) أن تراكز العوامل هو أعلى من التراكز المقبول صحيحاً عالمياً (0.1-2.5 ppm) [17] كما تجد الأشارة إلى أن هناك ارتفاعاً في تراكز المركبات (14.03 ppm) Acenaphthylene و Acenaphthene (8.6 ppm) (والتي تمتاز باستطاعتها فعالية سرطانية) وبيكون الامر أكثر خطورة إذا ما أعتبرنا مجموع تراكز هذه العوامل ككل في الحالة المصلبة (33.91 ppm) يضاف إلى ذلك الاحتمال الكبير في توافد نتائج أخرى كهذه العوامل كما بين ذلك قياسات HPLC.

الاستنتاج

تكتسب هذه النتائج أهمية عالية جداً في مجال تحليل المواد الغذائية. إذا ما سعى العالم من الدول النامية في استخدام النبات المستخدمة في هذه الفحوصات لいました شعبية حيث تفترض نسباً من التلوث بقدر 0.1-0.3% وهي أعلى بكثير من نسبة التلوث المجردة كما يظهر من خلال الحساب السوحي. ويتبين النتائج نفسها صرورة إعثاء التحليل بيئة من نسب النباتات (اللحوم عموما) المستحيلة للغذاء البشري والحيوي على السواء.
Quantitative Detection of the Carcinogenic Polycyclic Aromatic Hydrocarbons in Wheat Corps Infected with Tilletia Carles.

Muthana Shanshal, Rehab Kubba, Shaima Daud and Hassan Abdullah

Abstract

Polycyclic Aromatic Hydrocarbons (PAH’s) are organic compounds widely spread in the environment. They are found in urban environments, crude oil and in the oil shales in large quantities. Due to their known carcinogenic activity, the qualitative and quantitative determination of PAH’s gained increasing interest in recent decades.

The determination of PAH’s compounds in polluted samples of wheat infected with Tilletia yeasts was carried out in order to find whether these are suitable for human consumption or not. PAH’s were looked for in three samples of wheat infected with Tilletia yeasts applying standard procedure, which includes soxhlet extraction (Dichloro Methane), followed by purification of the extract and finally analysis applying U.V., TLC and HPLC techniques. The detected PAH’s and their average concentrations for the three infected wheat samples are listed in the text.

المصادر:

6- Soedigdo S., Angus W. W. and Flesher J. W., Analytical Biochemistry, 67 (1975) 664.

