Yarmouk University
Faculty of Science
Department of Biological Science

The Effect of Water Stress, Salinity and Biotic Stress on *in vitro* Grown *Cucumis prophetarum* L.,

a Crop Wild Relative

Submitted by:
May Omar Abu Serdane

Supervised by:
Dr. Wesam Al Khateeb

Program: Biological Sciences
The Effect of Water Stress, Salinity and Biotic Stress on *in vitro*

Grown *Cucumis prophetarum* L., a Crop Wild Relative

by

May Omar Abu Serdaneh

B.Sc. Biological Sciences, United Arab Emirates University, 2002

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Biological Sciences, Yarmouk University, Irbid, Jordan

Approved by

Dr. Wesam Al Khateeb

Chairman

Assistant Professor of Plant Molecular Biology and Biotechnology, Department of Biological Sciences, Yarmouk University

Dr. Riyadh Muhaidat

Member

Assistant Professor of Plant Physiology, Department of Biological Sciences, Yarmouk University

Dr. Ibrahim Makhadmeh

Member

Associate Professor of Horticulture, Department of Plant Production, Jordan University of Science and Technology

2012
Dedication

This thesis is lovingly dedicated to my daughter Alisar. It is also dedicated to my parents. Their support, encouragement, and constant love have sustained me throughout my life.
Acknowledgements

It would not have been possible to write this thesis without the help and support of kind people around me, to only some of whom it is possible to give particular mention here. I am indebted to my supervisor, Dr. Wesam Al Khateeb, whose encouragement, guidance and support from the initial to the final level enabled me to completion of my study. I express my thanks to all members committee for their comments to Dr. Riyad Muhaidat and Dr. Ibrahim Makhadmeh. Great thanks to Prof. Ahmad El-Oqlah and Prof. Jamil Lahham for helping and offered invaluable assistance in my thesis work. I am deeply indebted to Dr. Muhammad Al U'datt from the Jordan University of Sciences and Technology whose helpe me in my thesis work. I want to thank Eng. Majdi Abu Shmais, Eng. Mohamed Al Omosh, Miss Reham Al Fased and Wala Drabseh for all their helps during experimental work. I would like to thank several members of the Department Biology, Faculty of Science Laboratory for their encouragement, genuine interest, discussion, critical evaluation and invaluable advice on the different procedures of my thesis. Sincere thanks are due to Dr. Emad Hussein, Dr. Amal Harb, Haifa Zogoul, Hajer Qwasmih, Ayman Al Jamal, Hanan Abu Shqra, Nor Btaineh, Baker Al Share, Sofian Al Jammal, Alia Al Swaei, Eiman Bahar, Mahmod Al Sabe, Rana Al Qwasmih, Essra Shatnawi, Heba Obidat, Hadil Al Jamal and
Muhammad Atili. Lastly, I offer my regards and blessings to my family especially to Waed and Afnan and my brothers and all of those who supported me in any respect during the completion of the thesis.
Table of Contents

<table>
<thead>
<tr>
<th>Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>ii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>ix</td>
</tr>
<tr>
<td>List of Appendix</td>
<td>xii</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>xiv</td>
</tr>
<tr>
<td>Abstract</td>
<td>xvi</td>
</tr>
<tr>
<td>Chapter One</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Overview</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Rationale</td>
<td>4</td>
</tr>
<tr>
<td>1.3. Objectives</td>
<td>5</td>
</tr>
<tr>
<td>Chapter Two</td>
<td>6</td>
</tr>
<tr>
<td>Literature Review</td>
<td>6</td>
</tr>
<tr>
<td>2.1. The Genus Cucumis</td>
<td>6</td>
</tr>
<tr>
<td>2.2. Plant Tissue Culture</td>
<td>8</td>
</tr>
<tr>
<td>2.3. In vitro Culture of Cucumis</td>
<td>9</td>
</tr>
<tr>
<td>2.4. Crop Wild Relatives (CWR)</td>
<td>10</td>
</tr>
<tr>
<td>2.5. Drought Stress</td>
<td>12</td>
</tr>
<tr>
<td>2.6. Salt Stress</td>
<td>14</td>
</tr>
</tbody>
</table>
2.7. Biotic Stress

Chapter Three

3. Materials and Methods

3.1. Plant Material

3.2. Establishment of in vitro Mother Stock Cultures

3.3. In vitro Propagation of *C. sativus*

3.4. In vitro Shoot Proliferation

3.5. In vitro Root Formation

3.6. Stress Treatments

3.6.1. Abiotic Stress

3.6.1.1. Salinity Stress

3.6.1.2. Water Stress

3.6.2. Biotic Stress

3.7. Biochemical Analysis

3.7.1. Proline Content

3.7.2. Lipid Peroxidation Content

3.7.3. Determination of Ash Content

3.8. Measurement of Elements

3.8.1. Total Nitrogen

3.8.2. Na and K Analysis
5.2.1.2. Biochemical Assays 74
5.3. Drought Stress ... 79
5.4. Biotic Stress ... 79
Chapter Six ... 81
6.1. Conclusion .. 81
6.2. Recommendation .. 83
6.3. References ... 84
Appendix ... 108
Abstract in Arabic .. 115
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Text Figures Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cucumis prophetarum L.</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>In vitro propagation of C. prophetarum</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td>Microshoot number of C. prophetarum grown MS medium supplemented with different types and levels of cytokinin</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>Number of leaves/shoot of C. prophetarum grown in MS medium supplemented with different types and levels of cytokinin</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>Roots number of C. prophetarum grown in MS medium supplemented with different types and levels of cytokinin</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>Microshoot length of C. prophetarum grown in MS medium supplemented with different types and levels of cytokinin</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>% of root induction of C. prophetarum microshoots grown in MS medium supplemented with different types and levels of auxin</td>
<td>49</td>
</tr>
<tr>
<td>8</td>
<td>Roots number of C. prophetarum microshoots grown in MS medium supplemented with different types and levels of auxin</td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td>Roots length of C. prophetarum microshoots grown in MS</td>
<td></td>
</tr>
</tbody>
</table>
medium supplemented with different types and levels of auxin

10 Relative microshoots number of *C. prophetarum* and *C. sativus*
grown under induced NaCl salinity *in vitro* --------------------------------- 52

11 Relative leaves number of *C. prophetarum* and *C. sativus* grown
under induced NaCl salinity *in vitro* --------------------------------------- 53

12 Relative microshoots length of *C. prophetarum* and *C. sativus*
grown under induced NaCl salinity *in vitro* --------------------------------- 54

13 Relative fresh weight of *C. prophetarum* and *C. sativus* grown
under induced NaCl salinity *in vitro* -- 55

14 Effect of salinity level on microshoots proline contents of *in vitro*
grown *C. prophetarum* and *C. sativus* --------------------------------------- 56

15 Effect of salinity level on microshoots lipid peroxidation
contents of *in vitro* grown *C. prophetarum* and *C. sativus* ----------- 57

16 Effect of salinity level on microshoots protein contents of *in vitro*
grown *C. prophetarum* and *C. sativus* -------------------------------------- 58

17 Effect of salinity level on microshoots ash content of *in vitro* grown *C. prophetarum* and *C. sativus* ---------------------------------- 59

18 Effect of salinity level on relative microshoot contents Na
of *in vitro* grown *C. prophetarum* and *C. sativus* --------------------- 60

19 Effect of salinity level on relative microshoot K contents of *in vitro*
grown *C. prophetarum* and *C. sativus* ------------------------------------- 61