COLORADO STATE UNIVERSITY

March 7, 1989

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER OUR SUPERVISION BY MASHHOOR A. REFAI ENTITLED GROUP ACTIONS ON FINITE CW-COMPLEXES BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY.

Committee on Graduate Work

Gael W. Miller

Frank DeMeyer

Henry P. Hohn

Co-Adviser

Jeanne DuFlot

Adviser

Frank DeMeyer

Department Head
CHAPTER 1

CW-COMPLEXES AND GROUP ACTIONS

This chapter will be a review for many of the basic definitions. Also there will be given some examples and remarks, necessary for our study of group actions on finite CW-complexes. Other definitions will be made as necessary in the text of this thesis.

Definition 1.1: Let G be a finite group and X be a set. An action of G on X is a function \(\alpha: G \times X \rightarrow X \), such that

(i) \(\alpha(1, x) = x \) for every \(x \in X \), where \(1 \) is the identity element of G.

(ii) \(\alpha(gh, x) = \alpha(g, \alpha(h, x)) \) for all \(g, h \in G \) and \(x \in X \).

Let us denote \(\alpha(g, x) \) by \(g \cdot x \). The action is said to be free if \(gx = x \) for any \(x \in X \), implies \(g = e \). Or equivalently the action is free if the isotropy subgroup at \(x \), \(G_x = \{ g \in G \mid gx = x \} = \{ e \} \), for every \(x \in X \). The action is called trivial if \(gx = x \), for all \(g \in G \) and for all \(x \in X \).

Remarks 1.2:

a) Recall that G with the discrete topology is a topological group. So if X is given to be a topological space, then \(\alpha \) in the previous definition should be continuous, and X is said to be a G-space.

b) If X is an abelian group, one also assumes \(g \cdot 0 = 0 \) and \(g(a+b) = ga + gb \), for all \(g \in G \) and \(a, b \in X \). In this case, "X is a G-module".
c) If X is a vector space over a field k, it is also required (in addition to b) that $g(\beta x) = \beta g(x)$ for all $\beta \in k$, $g \in G$ and $x \in X$.

Definition 1.3: Let G be a finite group of order n, and let k be a field. Define the group algebra $k[G]$ to be a k-vector space with a basis consisting of the elements of G. An arbitrary element in $k[G]$ can be written as

$$\sum_{g \in G} \alpha_g g$$

where $\alpha_g \in K$, and the operations are defined by,

$$\left[\sum_{g \in G} \alpha_g g \right] \cdot \left[\sum_{h \in G} \beta_h h \right] = \sum_{g, h \in G} (\alpha_g \beta_h)(gh)$$

and

$$\left[\sum_{g \in G} \alpha_g g \right] + \left[\sum_{g \in G} \beta_g g \right] = \sum_{g \in G} (\alpha_g + \beta_g) g$$

A **chain complex** over $k[G]$ is a sequence of $k[G]$-modules $\{C_i\}_{i \in \mathbb{Z}}$ with $k[G]$-homomorphisms $\delta_i : C_i \rightarrow C_{i-1}$, such that $\delta_{i-1} \delta_i = 0$.

If X is a vector space on which G acts, then X becomes a $k[G]$-module and vice versa.

If X is a G-space, then for each $g \in G$, there is a homeomorphism $g : X \rightarrow X$ which takes x into gx. This map then induces an isomorphism $g_* : H_i^G(X, k) \rightarrow H_i^G(X, k)$ for each i, and hence the map

$\eta : G \times H_i^G(X, k) \rightarrow H_i^G(X, k)$ which takes (g, α) into $g_\alpha(\alpha)$ gives a $k[G]$-module structure on $H_i^G(X, k)$ for all i.

Example 1.4: Consider $X = S^{2t-1} \subset \mathbb{C}^t$ as

$$S^{2t-1} = \left\{ (Z_1, \ldots, Z_t) : Z_i \in \mathbb{C}, \sum \|Z_i\|^2 = 1 \right\}.$$

Let $G = \mathbb{Z}/n \cong \left\{ 1, e^{\frac{2\pi i}{n}}, e^{\frac{4\pi i}{n}}, \ldots, e^{\frac{2\pi i(n-1)}{n}} \right\}$.

Define an action of G on X by:

$$e^{\frac{2\pi ik}{n}} \cdot (Z_1, Z_2, \ldots, Z_t) = (e^{\frac{2\pi ik}{n}} \cdot Z_1, \ldots, e^{\frac{2\pi ik}{n}} \cdot Z_t).$$

Clearly $e^{\frac{2\pi i}{n}} \cdot (Z_1, \ldots, Z_t) = (Z_1, \ldots, Z_t)$ and

$$\left(e^{\frac{2\pi ik}{n}} \cdot e^{\frac{2\pi ik}{n_2}} \right) \cdot (Z_1, \ldots, Z_t) = e^{\frac{2\pi ik}{n}} \cdot \left(e^{\frac{2\pi ik}{n}} \cdot (Z_1, \ldots, Z_t)\right).$$

If $e^{\frac{2\pi ik}{n}} \cdot (Z_1, \ldots, Z_t) = (Z_1, \ldots, Z_t)$, then $e^{\frac{2\pi ik}{n}} = 1$, and hence the action is free.

Recall the following definition and lemma.

Definition 1.5: Let $n \geq 1$, and $f: S^n \to S^n$ be a continuous map. Let α be one of the generators of $H_n(S^n) \cong \mathbb{Z}$. Then $f_\#(\alpha) = d\alpha$ for some integer d. The integer d is called the degree of the map f, and it is independent of the choice of the generator, because $f_\#(-\alpha) = d(-\alpha)$. We say that f has a **fixed point**, if there exist a point $x \in S^n$, for which $f(x) = x$.

Lemma 1.6: If $f: S^n \to S^n$ has no fixed point, then degree $f = (-1)^{n+1}$.

Proof: See Munkres [25].

In the previous example, the map $g: X \to X$ which takes x into g_x induces an isomorphism $g_\#: H_\#(S^{2t-1}, \mathbb{Z}) \to H_\#(S^{2t-1}, \mathbb{Z})$. Now

$$H_\#(S^{2t-1}, \mathbb{Z}) \cong \begin{cases} \mathbb{Z} & \text{if } * = 0, 2t-1 \\ 0 & \text{otherwise} \end{cases}$$
Since the action has no fixed points, the lemma above says

\[\text{degree } g = (-1)^{(2t-1)t+1} = 1. \]

Thus \(g_x(\alpha) = d \alpha = 1 \cdot \alpha \), for a generator \(\alpha \in H_{2t-1}(S^{2t-1}, \mathbb{Z}) \). Therefore, \(g_x \) - Identity and hence the action of \(G \) is trivial on homology. At the end of this chapter you will see an example of an action, whose induced action on homology is not trivial.

Remark 1.7: The action of the previous example can be extended to an action of \(\mathbb{Z}/n \) on \(S^{2t-1} \) by

\[(g_1, g_2, \ldots, g_\ell) \cdot (x_1, x_2, \ldots, x_\ell) = (g_1 \cdot x_1, g_2 \cdot x_2, \ldots, g_\ell \cdot x_\ell). \]

Given a CW-complex \(X \), one can construct a cellular chain complex as follows, see Munkres [25] for more details.

For each \(p \geq 0 \), let \(X^p \) be the union of all cells in \(X \) of dimension \(\leq p \), and \(X^n = \emptyset \) for \(n < 0 \).

Let \(C_p(X) = H_p(X^p, X^{p-1}) \), and define the boundary map

\[\partial_p : C_p(X) \rightarrow C_{p-1}(X) \text{ to be the composite} \]

\[H_p(X^p, X^{p-1}) \xrightarrow{\Delta} H_{p-1}(X^{p-1}) \xrightarrow{(i_{p-1})^\ast} H_{p-1}(X^{p-1}, X^{p-2}) \]

where \(i_{p-1} \) is the inclusion from \((X^{p-1}, \emptyset) \) into \((X^{p-1}, X^{p-2}) \) and \(\Delta_p \) is the connecting homomorphism in the following long exact sequences.
Since the vertical sequence is exact, $\Delta_{p-1} \circ (i_{p-1})^* = 0$, and hence,

$$\partial_{p-1} \circ \partial_p = \left[(i_{p-2})^* \circ \Delta_{p-1} \right] \circ \left[(i_{p-1})^* \circ \Delta_p \right]$$

$$= (i_{p-2})^* \circ \left[\Delta_{p-1} \circ (i_{p-1})^* \right] \circ \Delta_p$$

$$= (i_{p-2})^* \circ 0 \circ \Delta_p = 0.$$

So we have a cellular chain complex

$$C_*(X) = \left\{ C_p(X), \partial_p \right\}.$$

Using this cellular chain complex, one can compute the homology and cohomology groups of X.