DECOMPOSITIONS OF CONTINUITY VIA GRILLS

AHMAD AL-OMARI AND TAKASHI NOIRI

Abstract. In this paper, we introduce the notions of G-α-open sets, G-semi-open sets and G-β-open sets in grill topological spaces and investigate their properties. Furthermore, by using these sets we obtain new decompositions of continuity.

1. Introduction

The idea of grills on a topological space was first introduced by Choquet [4]. The concept of grills has shown to be a powerful supporting and useful tool like nets and filters, for getting a deeper insight into further studying some topological notions such as proximity spaces, closure spaces and the theory of compactifications and extension problems of different kinds (see [2], [3], [11] for details). In [10], Roy and Mukherjee defined and studied a typical topology associated rather naturally to the existing topology and a grill on a given topological space. Quite recently, Hatir and Jafari [5] have defined new classes of sets in a grill topological space and obtained a new decomposition of continuity in terms of grills. In this paper, we introduce and investigate the notions of G-α-open sets, G-semi-open sets and G-β-open sets in grill topological spaces. We define grill α-continuous functions to obtain decompositions of continuity.

2000 Mathematics Subject Classification. 54A05, 54C10.
Key words and phrases. grill, decomposition of continuity, G-α-open, G-semi-open, G-preopen, G-β-open.
Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.
Received: June 6, 2010 Accepted: Dec. 23, 2010.
2. Preliminaries

Let \((X, \tau)\) be a topological space with no separation properties assumed. For a subset \(A\) of a topological space \((X, \tau)\), \(Cl(A)\) and \(Int(A)\) denote the closure and the interior of \(A\) in \((X, \tau)\), respectively. The power set of \(X\) will be denoted by \(\mathcal{P}(X)\).

The definition of grill on a topological space, as given by Choquet [4], goes as follows: A non-null collection \(\mathcal{G}\) of subsets of a topological spaces \(X\) is said to be a grill on \(X\) if

1. \(\phi \notin \mathcal{G}\),
2. \(A \in \mathcal{G}\) and \(A \subseteq B\) implies that \(B \in \mathcal{G}\),
3. \(A, B \subseteq X\) and \(A \cup B \in \mathcal{G}\) implies that \(A \in \mathcal{G}\) or \(B \in \mathcal{G}\).

For example let \(R\) be the set of all real numbers consider a subset \(\mathcal{G} = \{A \subseteq R : m(A) \neq 0\}\), where \(m(A)\) is the Lebesgue measure of \(A\), then \(\mathcal{G}\) is a grill. For any point \(x\) of a topological space \((X, \tau)\), \(\tau(x)\) denotes the collection of all open neighborhoods of \(x\).

Definition 2.1. [10] Let \((X, \tau)\) be a topological space and \(\mathcal{G}\) be a grill on \(X\). A mapping \(\Phi : \mathcal{P}(X) \to \mathcal{P}(X)\) is defined as follows:

\[\Phi(A) = \Phi_G(A, \tau) = \{x \in X : A \cap U \in \mathcal{G} \text{ for all } U \in \tau(x)\}\]

for each \(A \in \mathcal{P}(X)\). The mapping \(\Phi\) is called the operator associated with the grill \(\mathcal{G}\) and the topology \(\tau\).

Proposition 2.1. [10] Let \((X, \tau)\) be a topological space and \(\mathcal{G}\) be a grill on \(X\). Then for all \(A, B \subseteq X\):

1. \(A \subseteq B\) implies that \(\Phi(A) \subseteq \Phi(B)\),
2. \(\Phi(A \cup B) = \Phi(A) \cup \Phi(B)\),
3. \(\Phi(\Phi(A)) \subseteq \Phi(\Phi(A)) = Cl(\Phi(A)) \subseteq Cl(A)\).

Let \(\mathcal{G}\) be a grill on a space \(X\). Then we define a map \(\Psi : \mathcal{P}(X) \to \mathcal{P}(X)\) by \(\Psi(A) = A \cup \Phi(A)\) for all \(A \in \mathcal{P}(X)\). The map \(\Psi\) is a Kuratowski closure axiom. Corresponding to a grill \(\mathcal{G}\) on a topological space \((X, \tau)\), there exists a unique topology
τ_{G} on X given by τ_{G} = \{ U \subseteq X : \Psi(X - U) = X - U \}, where for any A \subseteq X, \Psi(A) = A \cup \Phi(A) = τ_{G}-Cl(A). For any grill G on a topological space (X, τ), τ \subseteq τ_{G}. If (X, τ) is a topological space with a grill G on X, then we call it a grill topological space and denote it by (X, τ, G).

Example 2.1. [10] Let τ denote the cofinite topology on an uncountable set X and let G be the grill of all uncountable subset of X. Then it is clearly τ \setminus \{ \emptyset \} \subseteq G. We show that τ_{G} is the cocountable topology which denoted by τ_{co} on X. If V \in τ_{G}, then V = U - A, where U \in τ and A \notin G implies that (X - U) is finite and A is countable. Now X - V = X \cap (X - V) = X \cap (X - (U \cap (X - A))) = X \cap ((X - U) \cup A) = (X - U) \cup A which is countable and hence V \in τ_{co}. On the other hand if V \in τ_{co} implies that X - V = A \notin G and hence V = X - A, where X \in τ and A \notin G so V \in τ_{G}. Thus τ_{G} = τ_{co}.

Lemma 2.1. [10] For any grill G on a topological space (X, τ), τ \subseteq B(G, τ) \subseteq τ_{G}, where B(G, τ) = \{ V - A : V \in τ and A \notin G \} is an open base for τ_{G}.

Example 2.2. Let (X, τ) be a topological space. If G = \mathcal{P}(X) \setminus \{ \emptyset \}, then τ_{G} = τ. Since for any τ_{G}-basic open set V = X - A with U \in τ and A \notin G, we have A = \emptyset, so that V = U \in τ. Hence by Lemma 2.1 we have in this case τ = B(G, τ) = τ_{G}.

Definition 2.2. A subset A of a topological space X is said to be:

1. α-open [9] if A \subseteq Int(Cl(Int(A))),
2. semi-open [6] if A \subseteq Cl(Int(A)),
3. preopen [8] if A \subseteq Int(Cl(A)),
4. β-open [1] if A \subseteq Cl(Int(Cl(A))).

Definition 3.1. Let (X, τ, G) be a grill topological space. A subset A in X is said to be
(1) Φ-open [5] if $A \subseteq \text{Int}(\Phi(A))$,
(2) \mathcal{G}-α-open if $A \subseteq \text{Int}(\Psi(\text{Int}(A)))$,
(3) \mathcal{G}-preopen [5] if $A \subseteq \text{Int}(\Psi(A))$,
(4) \mathcal{G}-semi-open if $A \subseteq \Psi(\text{Int}(A))$,
(5) \mathcal{G}-β-open if $A \subseteq \text{Cl}(\text{Int}(\Psi(A)))$.

The family of all \mathcal{G}-α-open (resp. \mathcal{G}-preopen, \mathcal{G}-semi-open, \mathcal{G}-β-open) sets in a grill topological space (X, τ, \mathcal{G}) is denoted by $\mathcal{G}\alpha O(X)$ (resp. $\mathcal{G}PO(X)$, $\mathcal{G}SO(X)$, $\mathcal{G}\beta O(X)$).

Remark 1. For several sets defined above, we have the following implications, where converses of implications need not be true as shown by below examples.

Example 3.1. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}$ and the grill
$\mathcal{G} = \{\{a\}, \{b\}, \{a, c\}, \{a, b\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{c, b, d\}, \{a, c, d\}, \{b, c\}, \{b, d\}, \{b, c, d\}, X\}$.

Then
(1) $A = \{b, c, d\}$ is a semi-open set which is not \mathcal{G}-semi-open.
(2) $A = \{b, c\}$ is a \mathcal{G}-β-open set which is not \mathcal{G}-semi-open.
(3) $B = \{a, b\}$ is a G-semi-open set which is not preopen and hence it is not G-preopen.

(4) $C = \{a, b, c\}$ is a G-α-open set which is not open.

Example 3.2. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}$ and the grill $G = \{\{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{a, b, d\}, X\}$. Then $A = \{a, c, d\}$ is an α-open set and a G-β-open set which is not G-preopen.

Example 3.3. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$ and the grill $G = \{\{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, c\}, X\}$. Then

(1) $A = \{a, c\}$ is a β-open set which is not G-β-open.

(2) $B = \{a, b\}$ is a G-preopen set which is not G-semi-open.

Proposition 3.1. For a subset of a grill topological space (X, τ, G), the following properties are hold:

(1) Every G-α-open set is α-open.

(2) Every G-semi-open set is semi-open.

(3) Every G-β-open set is β-open.

Theorem 3.1. Let A be a subset of a grill topological space (X, τ, G). Then the following properties hold:

(1) A subset A of X is G-α-open if and only if it is G-semi-open and G-pre-open,

(2) If A is G-semi-open, then A is G-β-open.

(3) If A is G-preopen, then A is G-β-open.

Proof.

(1) **Necessity.** This is obvious.

Sufficiency. Let A be G-semi-open and G-pre-open. Then we have $A \subseteq \text{Int}(\Psi(A)) \subseteq \text{Int}(\Psi(\text{Int}(A))) \subseteq \text{Int}(\Psi(\text{Int}(A)))$. This shows that A is G-α-open.

(2) Since A is G-semi-open and $\tau \subseteq \tau_G$, we have $A \subseteq \Psi(\text{Int}(A)) \subseteq \text{Cl}(\text{Int}(A)) \subseteq \text{Cl}(\text{Int}(\Psi(A)))$. This shows that A is G-β-open.

(3) The proof is obvious. \[\square\]
Theorem 3.2. A subset A of a grill topological space (X, τ, \mathcal{G}) is \mathcal{G}-semi-open if and only if $\Psi(A) = \Psi(\text{Int}(A))$.

Theorem 3.3. A subset A of a grill topological space (X, τ, \mathcal{G}) is \mathcal{G}-semi-open if and only if there exists $U \in \tau$ such that $U \subseteq A \subseteq \Psi(U)$.

Proof. Let A be \mathcal{G}-semi-open, then $A \subseteq \Psi(\text{Int}(A))$. Take $U = \text{Int}(A)$. Then we have $U \subseteq A \subseteq \Psi(U)$. Conversely, let $U \subseteq A \subseteq \Psi(U)$ for some $U \in \tau$. Since $U \subseteq A$, we have $U \subseteq \text{Int}(A)$ and hence $\Psi(U) \subseteq \Psi(\text{Int}(A))$. Thus we obtain $A \subseteq \Psi(\text{Int}(A))$. □

Theorem 3.4. If A is a \mathcal{G}-semi-open set in a grill topological space (X, τ, \mathcal{G}) and $A \subseteq B \subseteq \Psi(A)$, then B is \mathcal{G}-semi-open in (X, τ, \mathcal{G}).

Proof. Since A be \mathcal{G}-semi-open, there exists an open set U of X such that $U \subseteq A \subseteq \Psi(U)$. Then we have $U \subseteq A \subseteq B \subseteq \Psi(A) \subseteq \Psi(\Psi(U)) = \Psi(U)$ and hence $U \subseteq B \subseteq \Psi(U)$. By Theorem 3.3, we obtain that B is \mathcal{G}-semi-open in (X, τ, \mathcal{G}). □

Lemma 3.1. [10] Let (X, τ) be a topological space and \mathcal{G} be a grill on X. If $U \in \tau$, then $U \cap \Phi(A) = U \cap \Phi(U \cap A)$ for any $A \subseteq X$.

Lemma 3.2. Let A be a subset of a grill topological space (X, τ, \mathcal{G}). If $U \in \tau$, then $U \cap \Psi(A) \subseteq \Psi(U \cap A)$.

Proof. Since $U \in \tau$, by Lemma 3.1 we obtain $U \cap \Psi(A) = U \cap (A \cup \Phi(A)) = (U \cap A) \cup (U \cap \Phi(A)) \subseteq (U \cap A) \cup \Phi(U \cap A) = \Psi(U \cap A)$. □

Proposition 3.2. Let (X, τ, \mathcal{G}) be a grill topological space.

1. If $V \in \mathcal{G}SO(X)$ and $A \in \mathcal{G} \alpha O(X)$, then $V \cap A \in \mathcal{G}SO(X)$.
2. If $V \in \mathcal{G} PO(X)$ and $A \in \mathcal{G} \alpha O(X)$, then $V \cap A \in \mathcal{G} PO(X)$.

Proof. (1) Let $V \in \mathcal{G}SO(X)$ and $A \in \mathcal{G} \alpha O(X)$. By using Lemma 3.2 we obtain
$V \cap A \subseteq \Psi(\text{Int}(V)) \cap \text{Int}(\Psi(\text{Int}(A)))$
\[\subseteq \Psi[\text{Int}(V) \cap \text{Int}(\Psi(\text{Int}(A)))]\]
\[\subseteq \Psi[\text{Int}(V) \cap \Psi(\text{Int}(A))]
\[\subseteq \Psi[\text{Int}(V) \cap \text{Int}(A)]\]
\[\subseteq \Psi[\text{Int}(V \cap A)].\]

This shows that $V \cap A \in \mathcal{G}SO(X)$.

(2) Let $V \in \mathcal{G}PO(X)$ and $A \in \mathcal{G}oaO(X)$. By using Lemma 3.2 we obtain

$V \cap A \subseteq \text{Int}(\Psi(V)) \cap \text{Int}(\Psi(\text{Int}(A)))$
\[= \text{Int}[\text{Int}(\Psi(V)) \cap \Psi(\text{Int}(A))]
\[\subseteq \text{Int}[\Psi[\text{Int}(\Psi(V)) \cap \text{Int}(A)]]\]
\[\subseteq \text{Int}[\Psi[\Psi(V) \cap \text{Int}(A)]]\]
\[\subseteq \text{Int}[\Psi[\text{Int}(V) \cap \text{Int}(A)]]\]
\[\subseteq \text{Int}[\Psi[\text{Int}(V \cap A)]]\].

This shows that $V \cap A \in \mathcal{G}PO(X)$. □

Corollary 3.1. Let (X, τ, \mathcal{G}) be a grill topological space.

(1) If $V \in \mathcal{G}SO(X)$ and $A \in \tau$, then $V \cap A \in \mathcal{G}SO(X)$.

(2) If $V \in \mathcal{G}PO(X)$ and $A \in \tau$, then $V \cap A \in \mathcal{G}PO(X)$.

Proposition 3.3. Let (X, τ, \mathcal{G}) be a grill topological space.

(1) If $A, B \in \mathcal{G}oaO(X)$, then $A \cap B \in \mathcal{G}oaO(X)$.

(2) If $A_i \in \mathcal{G}oaO(X)$ for each $i \in I$, then $\bigcup_{i \in I} A_i \in \mathcal{G}oaO(X)$.
Proof. (1) Let \(A, B \in G_\alpha O(X) \). By Theorem 3.1 \(A \) is \(G \)-semi-open and \(G \)-pre-open and by Proposition 3.2 \(A \cap B \) is \(G \)-semi-open and \(G \)-pre-open. Therefore, \(A \cap B \in G_\alpha O(X) \).

(2) Let \(A_i \in G_\alpha O(X) \) for each \(i \in I \). Then, we have

\[
A_i \subseteq \text{Int}(\Psi(\text{Int}(A_i))) \subseteq \text{Int}(\Psi(\text{Int}(\bigcup_{i \in I} A_i)))
\]

This shows that \(\bigcup_{i \in I} A_i \in G_\alpha O(X) \).

\(\square \)

Corollary 3.2. Let \((X, \tau, G)\) be a grill topological space. Then the family \(G_\alpha O(X) \) is a topology for \(X \) such that \(\tau \subseteq G_\alpha O(X) \subseteq \tau^\alpha \), where \(\tau^\alpha \) denotes the family of \(\alpha \)-open sets of \(X \).

Proof. Since \(\phi, X \in G_\alpha O(X) \), this is an immediate consequence of Propositions 3.1 and 3.3.

\(\square \)

Example 3.4. Let \(X = \{a, b, c, d\} \), \(\tau = \{\phi, X, \{a\}, \{a, b\}\} \) and the grill

\(G = \{\{a, b\}, \{a, b, c\}, \{a, b, d\}, X\} \). Then

\(\tau^\alpha = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, c, d\}, \{a, b, d\}, \{a, c, d\}\} \) and

\(G_\alpha O(X) = \{\phi, X, \{a\}, \{a, b\}, \{a, b, d\}, \{a, b, c\}\} \) and hence \(\tau \subsetneq G_\alpha O(X) \subsetneq \tau^\alpha \).

Remark 2. (1) The minimal grill is \(G = \{X\} \) in any a topological space \((X, \tau)\).

(2) The maximal grill is \(G = \mathcal{P}(X) \setminus \{\phi\} \) in any a topological space \((X, \tau)\).

The proofs of the following three corollary is straightforward, hence it is omitted.

Corollary 3.3. Let \((X, \tau, G)\) be a grill topological space and \(A \) a subset of \(X \). If \(G = \mathcal{P}(X) \setminus \{\phi\} \). Then the following hold:

(1) \(A \) is \(G \)-\(\alpha \)-open if and only if \(A \) is \(\alpha \)-open.

(2) \(A \) is \(G \)-preopen if and only if \(A \) is preopen.

(3) \(A \) is \(G \)-semi-open if and only if \(A \) is semi-open.

(4) \(A \) is \(G \)-\(\beta \)-open if and only if \(A \) is \(\beta \)-open.
Let \((X, \tau, \mathcal{G})\) be a grill topological space. If \(\mathcal{G} = \{X\}\), then \(\Phi(A) = \emptyset\) for any subset \(A\) of \(X\) and \(\Psi(A) = \tau_\mathcal{G} \cdot Cl(A) = A\) and hence \(\tau_\mathcal{G} = \tau_{dis}\), where \(\tau_{dis}\) is the discrete topology on \(X\).

Corollary 3.4. Let \((X, \tau, \mathcal{G})\) be a grill topological space and \(A\) a subset of \(X\). If \(\Phi(A) = \emptyset\) for any subset \(A\) of \(X\) and \(\Psi(A) = \tau_\mathcal{G} \cdot Cl(A) = A\) and hence \(\tau_\mathcal{G} = \tau_{dis}\), where \(\tau_{dis}\) is the discrete topology on \(X\).

Corollary 3.5. Let \((X, \tau, \mathcal{G})\) be a grill topological space and \(A\) a subset of \(X\). If \(\Phi(A) = Cl(\text{Int}(Cl(A)))\) for any subset \(A\) of \(X\). Then the following hold:

1. \(A\) is \(\mathcal{G}\)-\(\alpha\)-open if and only if \(A\) is \(\alpha\)-open.
2. \(A\) is \(\mathcal{G}\)-preopen if and only if \(A\) is \(\beta\)-open.

Recall that \((X, \tau)\) is called submaximal if every dense subset of \(X\) is open.

Lemma 3.3. [7] If \((X, \tau)\) is submaximal, then \(PO(X, \tau) = \tau\).

Corollary 3.6. If \((X, \tau)\) is submaximal, then for any grill \(\mathcal{G}\) on \(X\), \(\tau = \alpha O(X) = PO(X, \tau) = \mathcal{G}PO(X) = \mathcal{G}O(X)\).

Theorem 3.5. Let \((X, \tau, \mathcal{G})\) be a grill topological space and \(A, B\) subsets of \(X\). If \(U_\alpha \in \mathcal{G}SO(X, \tau)\) for each \(\alpha \in \Delta\), then \(\cup \{U_\alpha : \alpha \in \Delta\} \in \mathcal{G}SO(X, \tau)\).

Proof. Since \(U_\alpha \in \mathcal{G}SO(X, \tau)\), we have \(U_\alpha \subseteq \Psi(\text{Int}(U_\alpha))\) for each \(\alpha \in \Delta\). Thus we obtain \(U_\alpha \subseteq \Psi(\text{Int}(U_\alpha)) \subseteq \Psi(\text{Int}(\cup_{\alpha \in \Delta} U_\alpha))\) and hence \(\cup_{\alpha \in \Delta} U_\alpha \subseteq \Psi(\text{Int}(\cup_{\alpha \in \Delta}(U_\alpha)))\). This shows that \(\cup \{U_\alpha : \alpha \in \Delta\} \in \mathcal{G}SO(X, \tau)\). \(\square\)

Definition 3.2. A subset \(F\) of a grill topological space \((X, \tau, \mathcal{G})\) is said to be \(\mathcal{G}\)-semi-closed (resp. \(\mathcal{G}\)-preclosed) if its complement is \(\mathcal{G}\)-semi-open (resp. \(\mathcal{G}\)-preopen).

Theorem 3.6. If a subset \(A\) of a grill topological space \((X, \tau, \mathcal{G})\) is \(\mathcal{G}\)-semi-closed, then \(\text{Int}(\Psi(A)) \subseteq A\).
Theorem 3.7. If a subset A of a grill topological space (X, τ, \mathcal{G}) is \mathcal{G}-preclosed, then $\Psi(\text{Int}(A)) \subseteq A$.

Definition 3.3. Let (X, τ, \mathcal{G}) be a grill topological space. A subset A in X is called

(1) a g_1-set if $\text{Int}(\Psi(\text{Int}(A))) = \text{Int}(A)$,
(2) a g_2-set if $\Psi(\text{Int}(A)) = \text{Int}(A)$.

Definition 3.4. Let (X, τ, \mathcal{G}) be a grill topological space. A subset A in X is called

(1) a G_1-set if $A = U \cap V$, where $U \in \tau$ and V is a g_1-set,
(2) a G_2-set if $A = U \cap V$, where $U \in \tau$ and V is a g_2-set.

Theorem 3.8. Let (X, τ, \mathcal{G}) be a grill topological space. For a subset A of X, the following conditions are equivalent:

(1) A is open;
(2) A is \mathcal{G}-α-open and a G_1-set;
(3) A is \mathcal{G}-semi-open and a G_2-set.

Proof. (1) \Rightarrow (2) Let A be any open set. Then we have $A = \text{Int}(A) \subseteq \text{Int}(\Psi(\text{Int}(A)))$. Therefore A is \mathcal{G}-α-open and because X is a g_1-set, hence A is a G_1-set.

(2) \Rightarrow (1) Let A be \mathcal{G}-α-open and a G_1-set. Let $A = U \cap C$, where U is open and $\text{Int}(\Psi(\text{Int}(C))) = \text{Int}(C)$. Since A is a \mathcal{G}-α-open set, we have

$$U \cap C \subseteq \text{Int}(\Psi(\text{Int}(U \cap C)))$$

$$= \text{Int}(\Psi(\text{Int}(U) \cap \text{Int}(C)))$$

$$= \text{Int}(\Psi(U \cap \text{Int}(C)))$$

$$\subseteq \text{Int}(\Psi(U) \cap \Psi(\text{Int}(C)))$$

$$= \text{Int}(\Psi(U)) \cap \text{Int}(\Psi(\text{Int}(C)))$$

$$= \text{Int}(\Psi(U)) \cap \text{Int}(C).$$
Since \(U \subseteq \text{Int}(\Psi(U)) \), we have
\[
U \cap C = (U \cap C) \cap U \subseteq \text{Int}(\Psi(U)) \cap \text{Int}(C) \cap U = U \cap \text{Int}(C) = \text{Int}(U \cap C).
\]
Therefore, \(A = U \cap C \) is an open set.

(1) \(\Rightarrow \) (3) This is obvious, because \(X \) is a \(g_2 \)-set, then \(A \) is a \(G_2 \)-set.

(3) \(\Rightarrow \) (1) Suppose that \(A \) is \(G \)-semi-open and a \(G_2 \)-set. Let \(A = U \cap C \), where \(U \) is open and \(\Psi(\text{Int}(C)) = \text{Int}(C) \). Since \(A \) is a \(G \)-semi-open set, we have
\[
\begin{align*}
U \cap C &\subseteq \Psi(\text{Int}(U \cap C)) \\
&= \Psi(\text{Int}(U) \cap \text{Int}(C)) \\
&= \Psi(U \cap \text{Int}(C)) \\
&\subseteq \Psi(U) \cap \Psi(\text{Int}(C)) \\
&= \Psi(U) \cap \text{Int}(C).
\end{align*}
\]
Since \(U \subseteq \Psi(U) \), we have
\[
U \cap C = (U \cap C) \cap U \subseteq \Psi(U) \cap \text{Int}(C) \cap U = U \cap \text{Int}(C) = \text{Int}(U \cap C).
\]
Therefore, \(A = U \cap C \) is an open set.

The notion of \(G_\alpha \)-openness (resp. \(G \)-semi-openness) is different from that of \(G_1 \)-sets (resp. \(G_2 \)-sets).

Remark 3. (1) In Example 3.1, \(A = \{a, b\} \) is a \(g_1 \)-set and hence a \(G_1 \)-set but it is not \(G_\alpha \)-open. And \(B = \{a, b, c\} \) is \(G \)-open but it is not a \(G_1 \)-set.

(2) In Example 3.2, \(A = \{a, c, d\} \) is a \(g_2 \)-set and hence a \(G_2 \)-set but it is not \(G \)-semi-open.

(3) In Example 3.1, \(B = \{a, b, c\} \) is \(G \)-semi-open but it is not a \(G_2 \)-set.

4. Decompositions of Continuity

Definition 4.1. A function \(f : (X, \tau, \mathcal{G}) \to (Y, \sigma) \) is said to be grill \(\alpha \)-continuous (resp. grill semi-continuous, grill pre-continuous [5]) if the inverse image of each open set of \(Y \) is \(\mathcal{G}_\alpha \)-open (resp. \(\mathcal{G} \)-semi-open, \(\mathcal{G} \)-preopen).
Theorem 4.1. For a function $f : (X, \tau, G) \to (Y, \sigma)$, the following properties are equivalent:

1. f is grill α-continuous;
2. For each $x \in X$ and each $V \in \sigma$ containing $f(x)$, there exists $W \in G_{\alpha O}(X)$ containing x such that $f(W) \subseteq V$;
3. The inverse image of each closed set in Y is G-α-closed;
4. $Cl(Int_G(Cl(f^{-1}(B)))) \subseteq f^{-1}(Cl(B))$ for each $B \subseteq Y$;
5. $f(Cl(Int_G(Cl(A)))) \subseteq Cl(f(A))$ for each $A \subseteq X$.

Proof. The implications follow easily from the definitions. \qed

Corollary 4.1. Let $f : (X, \tau, G) \to (Y, \sigma)$ be grill α-continuous, then

1. $f(\Psi(U)) \subseteq Cl(f(U))$ for each $U \in GPO(X)$.
2. $\Psi(f^{-1}(V)) \subseteq f^{-1}(Cl(V))$ for each $V \in GPO(Y)$.

Theorem 4.2. A function $f : (X, \tau, G) \to (Y, \sigma)$ is grill α-continuous if and only if the graph function $g : X \to X \times Y$, defined by $g(x) = (x, f(x))$ for each $x \in X$, is grill α-continuous.

Definition 4.2. A function $f : (X, \tau, G) \to (Y, \sigma, H)$ is said to be grill irresolute if $f^{-1}(V)$ is G-semi-open in (X, τ, G) for each G-semi-open V of (Y, σ, H).

Remark 4. It is obvious that continuity implies grill semi-continuity and grill semi-continuity implies semi-continuity.

Theorem 4.3. For a function $f : (X, \tau, G) \to (Y, \sigma)$, the following are equivalent:

1. f is grill semi-continuous.
2. For each $x \in X$ and each $V \in \sigma$ containing $f(x)$, there exists $U \in GSO(X)$ containing x such that $f(U) \subseteq V$.
3. The inverse image of each closed set in Y is G-semi-closed.

Theorem 4.4. Let $f : (X, \tau, G) \to (Y, \sigma, H)$ be grill semi-continuous and $f^{-1}(\Psi(V)) \subseteq \Psi(f^{-1}(V))$ for each $V \in \sigma$. Then f is grill irresolute.
Proof. Let B be any \mathcal{G}-semi-open set of (Y, σ, \mathcal{H}). By Theorem 3.3, there exists $V \in \sigma$ such that $V \subseteq B \subseteq \Psi(V)$. Therefore, we have $f^{-1}(V) \subseteq f^{-1}(B) \subseteq f^{-1}(\Psi(V)) \subseteq \Psi(f^{-1}(V))$. Since f is grill semi-continuous and $V \in \sigma$, $f^{-1}(V) \in \mathcal{G}SO(X)$ and hence by Theorem 3.4, $f^{-1}(B)$ is a \mathcal{G}-semi-open set of (X, τ, \mathcal{G}). This shows that f is grill irresolute. □

Theorem 4.5. A function $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is grill semi-continuous if and only if the graph function $g : X \to X \times Y$ is grill semi-continuous.

Theorem 4.6. A function $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is grill α-continuous if and only if it is grill semi-continuous and grill pre-continuous.

Proof. This is an immediate consequence of Theorem 3.1. □

Theorem 4.7. A function $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is grill α-continuous if and only if $f : (X, \mathcal{G}O(X)) \to (Y, \sigma)$ is continuous.

Proof. This is an immediate consequence of Corollary 3.2. □

Definition 4.3. A function $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is said to be G_1-continuous (resp. G_2-continuous) if the inverse image of each open set of Y is G_1-open (resp. G_2-open) in (X, τ, \mathcal{G}).

Theorem 4.8. Let (X, τ, \mathcal{G}) be a grill topological space. For a function $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$, the following conditions are equivalent:

1. f is continuous;
2. f is grill α-continuous and G_1-continuous;
3. f is grill semi-continuous and G_2-continuous.

Proof. This is an immediate consequence of Theorem 3.8. □

Acknowledgement

The authors wishes to thank the referees for useful comments and suggestions.
REFERENCES

(1) Al al-Bayt University, Department of Mathematics, Jordan

E-mail address: omarimutah1@yahoo.com

(2) 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan

E-mail address: t.noiri@nifty.com