QUASI αgrw-OPEN MAPS IN TOPOLOGICAL SPACES

N SELVANAYAKI (1) AND GNANAM BAL ILANGO (2)

Abstract. We introduce the notions of α-generalized regular weakly open sets, Quasi α-generalized regular weakly open maps and Quasi α-generalized regular weakly closed maps in topological spaces.

1. Introduction

In 2010, A. Vadivel and K. Vairamanickam [5] introduced Quasi rw-open and Quasi rw-closed functions in topological spaces. In 2013, Varun Joshi et al. [6] introduced gprw-closed and gprw-Quasi closed functions in topological spaces. Recently, as a generalization of closed sets, the notion of αgrw-closed sets, αgrw-continuous maps and αgrw-open maps were introduced and studied in [2, 3]. In this paper we introduce and characterize the concept of quasi αgrw-open maps.

2. Preliminaries

Throughout this paper X, Y and Z denote topological spaces (X, τ), (Y, σ) and (Z, η) respectively on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ), $\text{cl}(A)$, $\text{int}(A)$, $\alpha \text{cl}(A)$, $\alpha \text{int}(A)$ and

2000 Mathematics Subject Classification. 54A05.
Key words and phrases. αgrw-open sets, Quasi αgrw-open maps, Quasi αgrw-closed maps and αgrw^*-closed maps.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.
Received: March 15, 2015 Accepted May 31, 2015.
\(\alpha_{grw}\)-cl(A) denote the closure, interior, \(\alpha \)-closure, \(\alpha \)-interior and \(\alpha_{grw} \)-closure of A respectively. The complement of a set A of \((X, \tau)\) is denoted by \(A^c \) or \((X - A)\).

Definition 2.1. [4] A subset \(A \) of a topological space \((X, \tau)\) is called *regular open* if \(A = \text{int} (\text{cl}(A)) \).

Definition 2.2. [1] A subset \(A \) of a topological space \((X, \tau)\) is called regular semi-open if there is a regular open set \(U \) such that \(U \subseteq A \subseteq \text{cl}(U) \).

Definition 2.3. [2] A subset \(A \) of a topological space \((X, \tau)\) is called \(\alpha_{grw} \)-closed if \(\alpha_{cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is regular semi-open.

Definition 2.4. [3] A map \(f : (X, \tau) \to (Y, \sigma) \) is called

1. \(\alpha_{grw} \)-continuous if \(f^{-1}(V) \) is an \(\alpha_{grw} \)-closed set of \((X, \tau)\) for every closed set \(V \) of \((Y, \sigma)\),
2. \(\alpha_{grw} \)-open if \(f(U) \) is \(\alpha_{grw} \)-open in \((Y, \sigma)\) for every open set \(U \) of \((X, \tau)\).

Definition 2.5. [3] For a subset \(A \) of \((X, \tau)\), \(\alpha_{grw}\)-cl(A)\(= \cap \{ F : A \subseteq F, F \) is \(\alpha_{grw} \)-closed in \(X \}\).

3. On \(\alpha \)-generalized regular weakly open sets

Definition 3.1. A subset \(A \) in \((X, \tau)\) is called \(\alpha \)-generalized regular weakly open (briefly \(\alpha_{grw} \)-open) if \(A^c \) is \(\alpha_{grw} \)-closed.

The family of \(\alpha_{grw} \)-open is denoted by \(\alpha_{grw}O(X, \tau) \) or \(\alpha_{grw}O(X) \).

Theorem 3.1. A subset \(A \) of \((X, \tau)\) is \(\alpha_{grw} \)-open if and only if \(F \subseteq \alpha_{int}(A) \) whenever \(F \) is regular semi-closed and \(F \subseteq A \).
Proof. Suppose that $F \subseteq \text{aint}(A)$, whenever F is regular semi-closed and $F \subseteq A$. Let $A^c \subseteq U$, where U is regular semi-open. Then $U^c \subseteq A$, where U^c is regular semi-closed. By hypothesis $U^c \subseteq \text{aint}(A)$, which implies $[\text{aint}(A)]^c \subseteq U$. i.e., $\text{acl}(A^c) \subseteq U$. Thus A^c is agrw-closed. Hence A is agrw-open.

Conversely, suppose that A is agrw-open, $F \subseteq A$ and F is regular semi-closed. Then F^c is regular semi-open and $A^c \subseteq F^c$. Therefore $\text{acl}(A^c) \subseteq F^c$ and so $F \subseteq [\text{acl}(A^c)]^c = \text{aint}(A)$. Hence $F \subseteq \text{aint}(A)$.

Lemma 3.1. If a subset A of X is agrw-closed, then $\text{acl}(A) - A$ does not contain any non-empty regular semi-closed set.

Proof. Suppose that A is agrw-closed in X. Let U be a regular semi-closed set such that $U \subseteq \text{acl}(A) - A$. Then $A \subseteq U^c$. Since A is agrw-closed, we have $\text{acl}(A) \subseteq U^c$. Consequently, $U \subseteq [\text{acl}(A)]^c$. Thus $U \subseteq (\text{acl}(A)) \cap (\text{acl}(A))^c$. Hence $U = \emptyset$. Therefore $\text{acl}(A) - A$ does not contain any non-empty regular semi-closed set.

Theorem 3.2. If a subset A is agrw-open in (X, τ), then $U = X$ whenever U is regular semi-open and $\text{aint}(A) \cup A^c \subseteq U$.

Proof. Let A be agrw-open, U be regular semi-open such that $\text{aint}(A) \cup A^c \subseteq U$. This gives $U^c \subseteq [\text{aint}(A) \cup A^c]^c = \text{acl}(A^c) - A^c$. Since A^c is agrw-closed and U^c is regular semi-closed by Lemma 3.1, it follows that $U^c = \emptyset$. i.e., $X = U$.

Theorem 3.3. If A is agrw-open and $\text{aint}(A) \subseteq B \subseteq A$, then B is agrw-open.

Proof. Suppose that $\text{aint}(A) \subseteq B \subseteq A$ and A is agrw-open. Then $A^c \subseteq B^c \subseteq \text{acl}(A^c)$ and since A^c is agrw-closed, we have Theorem 3.26 [2], B^c is agrw-closed i.e., B is agrw-open.

Definition 3.2. Let (X, τ) be a topological space and $E \subseteq X$. $\text{agrw-int}(E)$ is the union of all agrw-open sets contained in E.
i.e., $\alpha\text{grw-int}(E) = \bigcup \{ E : E \subseteq A \text{ and } E \text{ is } \alpha\text{grw-open} \}$.

Lemma 3.2. Let A be a subset of a space (X, τ). Then $X - \alpha\text{grw-int}(A) = \alpha\text{grw-cl}(X - A)$.

Proof. Let $x \in X - \alpha\text{grw-int}(A)$. Then $x \notin \alpha\text{grw-int}(A)$. That is, every αgrw-open set B containing x is such that B is not contained in A. This implies every αgrw-open set B containing x is such that $B \cap (X - A) \neq \emptyset$. By Theorem 4.15 [3], $x \in \alpha\text{grw-cl}(X - A)$. Hence $(X - \alpha\text{grw-int}(A)) \subseteq \alpha\text{grw-cl}(X - A)$.

Conversely let $x \in \alpha\text{grw-cl}(X - A)$ then by Theorem 4.15 [3], every αgrw-open set B containing x is such that $B \cap (X - A) \neq \emptyset$. That is every αgrw-open set B containing x is such that B is not contained in A. This implies, $x \notin \alpha\text{grw-int}(A)$. Thus $x \in X - \alpha\text{grw-int}(A)$. Hence $\alpha\text{grw-cl}(X - A) \subseteq X - \alpha\text{grw-int}(A)$. Hence the proof.

Theorem 3.4. Let (X, τ) be a topological space. Then the following hold:

1. If $A \subseteq X$ is αgrw-closed, then $\alpha\text{cl}(A) - A$ is αgrw-open.
2. If A is αgrw-open and B is αgrw-open then $A \cap B$ is αgrw-open.
3. For any $E \subseteq X$, $\text{int}(E) \subseteq \alpha\text{grw-int}(E) \subseteq E$.

Proof.

1. Let A be αgrw-closed. Let F be regular semi-closed such that $F \subseteq \alpha\text{cl}(A) - A$. Then by Lemma 3.1, $F = \phi$. This implies $F \subseteq \alpha\text{int}(\alpha\text{cl}(A) - A)$. By Theorem 3.1, $\alpha\text{cl}(A) - A$ is αgrw-open.

2. Let A^c and B^c be αgrw-closed then $A^c \cup B^c$ is αgrw-closed by Theorem 3.19 [2]. This implies $A \cap B$ is αgrw-open.

3. Since every open set is αgrw-open, the proof follows immediately.

Definition 3.3. Let (X, τ) be a topological space. Let $\tau_{\alpha\text{grw}} = \{ U \subseteq X : \alpha\text{grw-cl}(X - U) = X - U \}$.
Theorem 3.5. Let \((X, \tau)\) be a topological space. Then the following hold:

1. Every \(\alpha grw\)-closed set is \(\alpha\)-closed if and only if \(\tau_{\alpha grw} = \alpha O(X, \tau)\).
2. Every \(\alpha grw\)-closed set is closed if and only if \(\tau_{\alpha grw} = \tau\).

Proof.

1. **Necessity.** Let \(A \in \tau_{\alpha grw}\). Then \(\alpha grw\)-cl\((X - A) = X - A\). By hypothesis, \(\alpha cl(X - A) \subseteq \alpha grw\)-cl\((X - A) = X - A\). This implies \(X - A\) is \(\alpha\)-closed and hence \(A \in \alpha O(X, \tau)\). Let \(A \in \alpha O(X, \tau)\), \(X - A\) is \(\alpha\)-closed which implies \(\alpha cl(X - A) = X - A\). Since every \(\alpha\)-closed set is \(\alpha grw\)-closed, \(\alpha grw\)-cl\((X - A) \subseteq \alpha cl(X - A) = X - A\). Hence \(A \in \tau_{\alpha grw}\).

2. **Sufficiency.** Suppose \(\tau_{\alpha grw} = \alpha O(X, \tau)\). Let \(A\) be \(\alpha grw\)-closed set. Then \(\alpha grw\)-cl\((A) = A\). This implies \(X - A \in \tau_{\alpha grw} = \alpha O(X, \tau)\). So \(A\) is \(\alpha\)-closed.

2. **Necessity.** Let \(A \in \tau_{\alpha grw}\). Then \(\alpha grw\)-cl\((X - A) = X - A\). By hypothesis, \(cl(X - A) \subseteq \alpha grw\)-cl\((X - A) = X - A\). This implies \(X - A\) is closed and hence \(A \in \tau\). Let \(A \in \tau\), \(X - A\) is closed which implies \(cl(X - A) = (X - A)\). Since every closed set is \(\alpha grw\)-closed, \(\alpha grw\)-cl\((X - A) \subseteq cl(X - A) = (X - A)\). Hence \(A \in \tau_{\alpha grw}\).

2. **Sufficiency.** Suppose \(\tau_{\alpha grw} = \tau\). Let \(A\) be \(\alpha grw\)-closed set. Then \(\alpha grw\)-cl\((A) = A\). This implies \(X - A \in \tau_{\alpha grw} = \tau\). So \(A\) is closed.

Theorem 3.6. If \(\alpha grw O(X, \tau)\) is closed under arbitrary union, then \(\tau_{\alpha grw}\) is a topology.

Proof.

1. Clearly, \(\emptyset, X \in \tau_{\alpha grw}\).
2. Let \(\{A_i : i \in \Lambda\} \in \tau_{\alpha grw}\). Then \(\alpha grw\)-cl\((X - (\bigcup A_i)) = \alpha grw\)-cl\((\bigcap (X - A_i)) \subseteq \bigcap \alpha grw\)-cl\((X - A_i) = \bigcap (X - A_i) = X - (\bigcup A_i)\). Therefore \(\bigcup A_i \in \tau_{\alpha grw}\).
3. Let \(A, B \in \tau_{\alpha grw}\). Now, \(\alpha grw\)-cl\((X - (A \cap B)) = \alpha grw\)-cl\((X - A) \cup \alpha grw\)-cl\((X - B) = (X - A) \cup (X - B) = X - (A \cap B)\). Then \(A \cap B \in \tau_{\alpha grw}\).

Hence \(\tau_{\alpha grw}\) is a topology.
4. Quasi αgrw-open maps

Definition 4.1. A map $f : (X, \tau) \to (Y, \sigma)$ is said to be quasi αgrw-open if the image of every αgrw-open set in X is open in Y.

Definition 4.2. A map $f : (X, \tau) \to (Y, \sigma)$ is said to be quasi αgrw-closed if the image of every αgrw-closed set in X is closed in Y.

It is evident that the concepts of quasi αgrw-openness (resp. αgrw-closedness) and αgrw-continuity coincide if the map is bijection.

Theorem 4.1. Every quasi αgrw-open map is open.

Proof. Let U be an open set in X. Since every open set is αgrw-open, U is αgrw-open in X. Then $f(U)$ is open in Y, since f is quasi αgrw-open map. Hence f is open.

Corollary 4.1. Every quasi αgrw-open map is αgrw-open.

Proof. It follows from Theorem 4.1 and Theorem 4.8(i) [3].

Remark 1. The converses of Theorem 4.1 and its corollary need not be true as seen from the following example.

Example 4.1. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}\}$, X, $Y = \{p, q, r\}$ and $\sigma = \{\emptyset, \{p\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by $f(a) = f(b) = p$, $f(c) = q$ and $f(d) = r$. Then f is open and αgrw-open but it is not quasi αgrw-open.

Theorem 4.2. A map $f : (X, \tau) \to (Y, \sigma)$ is said to be quasi αgrw-open if for every subset U of X, $f(\alpha grw\text{-int}(U)) \subseteq \text{int}(f(U))$.

Proof. Assume that U is αgrw-open set in X. Then $f(U) = f(\alpha grw\text{-int}(U)) \subseteq \text{int}(f(U))$ but $\text{int}(f(U)) \subseteq f(U)$. Consequently, $f(U) = \text{int}(f(U))$. Hence $f(U)$ is open in Y. Therefore f is quasi αgrw-open.
Theorem 4.3. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) and \(g : (Y, \sigma) \rightarrow (Z, \eta) \) be two maps and \(g \circ f : (X, \tau) \rightarrow (Z, \eta) \) be quasi \(\alpha grw \)-open. If \(g \) is continuous injective, then \(f \) is quasi \(\alpha grw \)-open.

Proof. Let \(U \) be a \(\alpha grw \)-open set in \(X \). Then, we have \((g \circ f)(U)\) is open in \(Z \), since \((g \circ f)\) is quasi \(\alpha grw \)-open. Again \(g \) is an injective continuous map, \(g^{-1}[(g \circ f)(U)] = f(U) \) is open in \(Y \). This shows that \(f \) is quasi \(\alpha grw \)-open.

Definition 4.3. A map \(f : (X, \tau) \rightarrow (Y, \sigma) \) is called \(\alpha grw^* \)-closed (resp. \(\alpha grw^* \)-open) map if the image of each \(\alpha grw \)-closed (resp. \(\alpha grw \)-open) subset in \(X \) is \(\alpha grw \)-closed (resp. \(\alpha grw \)-open) in \(Y \).

Theorem 4.4. For a topological space \((X, \tau)\), the following hold:

1. Every quasi \(\alpha grw \)-closed map is \(\alpha grw^* \)-closed.
2. Every \(\alpha grw^* \)-closed map is \(\alpha grw \)-closed.

Proof. Obvious.

Remark 2. The converses of the above theorem need not be true as seen from the following examples.

Example 4.2. Let \(X = \{a, b, c, d\} \), \(\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\} \), \(Y = \{p, q, r\} \) and \(\sigma = \{\emptyset, \{r\}, \{q, r\}, Y\} \). Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be defined by \(f(a) = f(b) = p \), \(f(c) = q \) and \(f(d) = r \). Then \(f \) is \(\alpha grw^* \)-closed but not quasi \(\alpha grw \)-closed.

Example 4.3. Let \(X = \{a, b, c, d\} \), \(\tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\} \), \(Y = \{p, q, r, s\} \) and \(\sigma = \{\emptyset, \{p\}, \{q\}, \{p, q\}, \{p, q, r\}, Y\} \). Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be defined by \(f(a) = s \), \(f(b) = q \), \(f(c) = p \) and \(f(d) = r \). Then \(f \) is \(\alpha grw \)-closed but not \(\alpha grw^* \)-closed.

Theorem 4.5. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) and \(g : (Y, \sigma) \rightarrow (Z, \eta) \) be two maps on topological spaces.
176 NSELVANAYAKI AND GNANAMBAL ILANGO

(1) If \(f \) is \(\alpha \text{grw} \)-closed and \(g \) is quasi \(\alpha \text{grw} \)-closed then \(g \circ f : (X, \tau) \to (Z, \eta) \) is closed.

(2) If \(f \) is quasi \(\alpha \text{grw} \)-closed and \(g \) is \(\alpha \text{grw} \)-closed then \(g \circ f : (X, \tau) \to (Z, \eta) \) is \(\alpha \text{grw}^* \)-closed.

(3) If \(f \) is \(\alpha \text{grw}^* \)-closed and \(g \) is quasi \(\alpha \text{grw} \)-closed then \(g \circ f : (X, \tau) \to (Z, \eta) \) is quasi \(\alpha \text{grw} \)-closed.

Proof. 1. Let \(F \) be a closed set in \(X \). Since \(f \) is \(\alpha \text{grw} \)-closed, \(f(F) \) is \(\alpha \text{grw} \)-closed set in \(Y \) and also \(g \) is a quasi \(\alpha \text{grw} \)-closed map therefore \(g(f(F)) \) is closed in \(Z \). Hence \(g \circ f \) is a closed map.

2. Let \(F \) be a \(\alpha \text{grw} \)-closed set in \(X \). Since \(f \) is quasi \(\alpha \text{grw} \)-closed, \(f(F) \) is closed set in \(Y \) and also \(g \) is an \(\alpha \text{grw} \)-closed map therefore \(g(f(F)) \) is \(\alpha \text{grw} \)-closed in \(Z \). Hence \(g \circ f \) is an \(\alpha \text{grw}^* \)-closed map.

3. Let \(F \) be a \(\alpha \text{grw} \)-closed set in \(X \). Since \(f \) is \(\alpha \text{grw}^* \)-closed, \(f(F) \) is \(\alpha \text{grw} \)-closed set in \(Y \) and also \(g \) is a quasi \(\alpha \text{grw} \)-closed map therefore \(g(f(F)) \) is closed in \(Z \). Hence \(g \circ f \) is a quasi \(\alpha \text{grw} \)-closed map.

Theorem 4.6. Let \(f : (X, \tau) \to (Y, \sigma) \) and \(g : (Y, \sigma) \to (Z, \eta) \) be two maps such that \(g \circ f : (X, \tau) \to (Z, \eta) \) be a quasi \(\alpha \text{grw} \)-closed map. If \(g \) is \(\alpha \text{grw} \)-continuous and injective map then \(f \) is \(\alpha \text{grw}^* \)-closed.

Proof. Suppose that \(F \) is any \(\alpha \text{grw} \)-closed set in \(X \). Since \(g \circ f \) is quasi \(\alpha \text{grw} \)-closed therefore \((g \circ f)(F) \) is closed in \(Z \) and also \(g \) is \(\alpha \text{grw} \)-continuous and injective map therefore \(g^{-1}[(g \circ f)(F)] = f(F) \), which is \(\alpha \text{grw} \)-closed in \(Y \). Hence \(f \) is \(\alpha \text{grw}^* \)-closed.

References

(1) Department of Mathematics, Akshaya College of Engineering and Technology, Coimbatore, Tamilnadu, INDIA

E-mail address: selvanayaki.nataraj@gmail.com

(2) Department of Mathematics, Government Arts College, Coimbatore, Tamilnadu, INDIA

E-mail address: gnanamilango@yahoo.co.in