On Mutually Normal Operators

Adnan Jibril*

Received on Oct. 10, 1996 Accepted for publication on March 25, 1997

Abstract

In this paper, we introduce the mutually normal relation, m, between operators acting on a Hilbert space. We show that many properties are shared by mutually normal operators. We give some characterizations in terms of the relation m.

Introduction

Let \(L(H) \) be the algebra of all bounded linear operators acting on a Hilbert space \(H \). If \(T \in L(H) \) then \(T \) is normal if and only if \(T^*T = TT^* \). If \(T, F \in L(H) \) then we say that \(T \) and \(F \) are mutually normal, \(TmF \), if the following hold:

\[
TT^* = F^*F; \quad T^*T = FF^*
\]

In the first section we investigate some properties of the mutually normal relation*. In the second section we prove that many properties are shared by mutually normal operators. In the third section we show that under certain conditions, general mutually normal operators become normal operators. In the fourth and last section we give characterizations of partial isometries and unitary operators in terms of the mutually normal relation.

1. In the first section we investigate some properties of the mutually normal relation. proposition 1.0 If \(T,F \) and \(S \) are in \(L(H) \) then the following facts follow immediately

© 1999 by Yarmouk University, Irbid-Jordan

* Department of Mathematical Sciences King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
(i) \(TmT^* \).
(ii) \(TmO \) if, and only if, \(T=O \).
(iii) \(TmT \) if, and only if, \(T \) is normal.
(iv) If \(T,F \) are unitary operators then \(TmF \).
(v) \(TmF \) if, and only if, \(FmT \).
(vi) If \(TmF \) and \(FmS \) then \(TmS^* \).

The following result shows that some properties are shared by mutually normal operators.

Proposition 1.1 Let \(T, F \in \mathbb{L}(H) \) such that \(TmF \), then:

(i) If \(T \) is normal then so is \(F \).
(ii) If \(T \) is unitary then so is \(F \).
(iii) If \(T \) is binormal (\(TT^* \) commutes with \(T^*T \)) then so is \(F \).
(iv) If \(T \) is a partial isometry then so is \(F \).
(v) If \(T \) is compact then so is \(F \).
(vi) If \(T \) is essentially normal (\(T^*T-TT^* \) is compact) then so is \(F \).
(vii) \(\|T\| = \|F\| \) and in particular if \(T \) is a contraction then so is \(F \).
(viii) If \(T \) is seminormal (\(T \) or \(T^* \) is hyponormal) then so is \(F \)

Proof (i), (ii) and (iii) follow immediately from (*)

(iv) Since \(T \) is a partial isometry, \(TT^* \) is a projection which implies that \(TT^* \) is a projection. Since \(TmF \), \(TT^* = F^*F \). Thus \(F^*F \) is a projection which means that \(F \) is a partial isometry.

(v) Since \(T \) is compact, \(TT^* \) is compact ([4], p. 427). Since \(TmF \), \(FF^* \) is compact. Thus \((F^*)^*F^* \) is compact which implies that \(F^* \) is compact. Thus \(F = (F^*)^* \) is compact.

(vi) Since \(T \) is essentially normal, \(T^*T - TT^* \) is compact. Thus \(FF^* - F^*F \) is compact. Since any scalar multiple of a compact operator is compact, \(F^*F - FF^* \) is compact which means that \(F \) is essentially normal.
(vii) Since TmF, $T^*T = F^*F$ and $T^*T = F^*F$. Since for any $T \in L(H)$, $||T^*T|| = ||T^2||$ and $||T^*T|| = ||TT^*||$, $||T||^2 = ||F||^2$ which implies that $||T|| = ||F||$. Since T is a contraction, $||T|| \leq 1$ which implies that $||F|| \leq 1$. Thus F is a contraction.

(viii) Since T is seminormal then T is hyponormal or T^* is hyponormal i.e. $T^*T \geq TT^*$ or $TT^* \geq T^*T$. Since TmF then $FF^* \geq F^*F$ or $F^*F \geq FF^*$, which means that F or F^* is hyponormal. Thus F is seminormal.

2. In section two we give some general results involving the mutual normality relation.

Proposition 2.1: If $T, F \in L(H)$ such that TmF then TF and FT are normal operators.

Proof. Since TmF, $TT^* = F^*F$ and $T^*T = FF^*$. Using these two equations we get
\[
(TF)^* (TF) = F^*T^*TF
= F^*FF^*F
= TT^*TT^*
= TFF^* T^*
= (TF) (TF)^*.
\]
Thus TF is normal. Similarly we show that FT is normal.

If T and F are partial isometries then TF is not necessarily a partial isometry. In the following proposition we show that the product of two mutually normal operators is a partial isometry even if only one of the two operators is a partial isometry.

Proposition 2.2: If $T, F \in L(H)$ such that TmF and T is a partial isometry then TF is a partial isometry.

Proof. Since T is a partial isometry,
\[
T^*T = T^*TT^*T.
\]
Since TmF,
\[
T^*T = FF^*.
\]
Using (1) and (2) above we obtain
\[
(TF)^* (TF)(TF)^* (TF)
\]
\[F^* T^* T F^* T F^* T F \]
\[= F^* T^* T T^* T F \]
\[= F^* T^* T T^* T F \]
\[= F^* T^* T T^* T F \]
\[= F^* T^* T F \]
\[= (T F)^*(T F) \].

Thus \((T F)^* (T F)\) is a projection which means that \(T F\) is a partial isometry.

Proposition 2.3: If \(T, F \in \mathcal{L}(H)\) are positive and mutually normal then \(T = F\).

Proof: Since \(T, F\) are positive, \(T = T^*\) and \(F = F^*\). Thus
\[T^2 = T T^* = T T^* = F^* F \]
Therefore \(T^2 = F^2\). Thus \(T = F\).

Proposition 2.4 If \(T, F \in \mathcal{L}(H)\) are isometries and \(T m F\) then \(T\) and \(F\) are unitaries.

Proof: Since \(T, F\) are isometries \(T^* T = I\) and \(F^* F = I\). Since \(T m F\), \(T^* T = F^* F\) and \(T T^* = F^* F\). Thus \(F^* F = F F^* = I\) and \(T^* T = T T^* = I\) which means that \(T\) and \(F\) are unitary operators.

Proposition 2.5 If \(T, F\) are two invertible operators in \(\mathcal{L}(H)\) then \(T m F\) if, and only if, \(T^{-1} m F^{-1}\).

Proof: Suppose first that \(T m F\) then \(T^* T = F^* F\) and \(T T^* = F^* F\). Using these two equations, we get
\[(T^{-1})^* (T^{-1}) = (T^* T^{-1}) (T^{-1}) = (T T^*)^{-1} (T^{-1}) = (F^* F)^{-1} (F^{-1})^{-1} = (F^{-1}) (F^{-1})^* \]
Similarly one can show that \(T^{-1} (T^{-1})^* = (F^{-1})^* (F^{-1})\). Thus \(T^{-1} m F^{-1}\). Suppose now that \(T^{-1} m F^{-1}\), then \(T^{-1} (T^{-1})^* = (F^{-1})^* (F^{-1})\). Thus \(T m F\).

Definition 2.1: The numerical range, \(w(T)\), of an operator \(T \in \mathcal{L}(H)\) is the set of all complex numbers of the form: \(\langle T x, x \rangle\), where \(x\) varies over all vectors on the unit sphere i.e. \(\|x\| = 1\). The numerical radius, \(w(T)\), of \(T\) is defined by \(w(T) = \sup \{ |\lambda| : \lambda \in \mathcal{W}(T) \}\).

Proposition 2.6: If \(T, F \in \mathcal{L}(H)\) such that \(T m F\) then \(w(T^* T) = w(F^* F)\).

Proof: Since \(T m F\) then following the proof of Proposition 1.1, (vii), we have \(\| T F \|^2 = \| F T \|^2\). Since \(T^* T\) is self-adjoint, it is normal and thus \(w(T^* T) = \| T^* T \|\) ([3], p. 117), but \(\| T F \|^2 = \| F T \|^2\), so that \(w(T^* T) = \| T \|^2\), and thus \(w(T^* T) = w(F^* F)\).
In this section we show that if \(T \) and \(F \) are mutually normal operators in \(L(H) \) then under certain conditions \(T \) and \(F \) become normal.

Proposition 3.1: If \(T, F \in L(H) \) such that \(TF = FT \) and \(TmF, \) then \(T \) and \(F \) are normal operators.

Proof. Since \(TF = FT \), \(T^*F^* = F^*T^* \). Thus we have

\[
TFF^* T^* = FTT^* F^*.
\]

(3)

Since \(TmF, T^*T = FF^* \) and \(TT^* = F^*F \) which when we substitute in (3) we get \(TT^*TT^* = FF^*F F^* = T^*T T^*T \). Thus we have

\[
(TT^*)^2 = (T^*T)^2.
\]

(4)

Since \(T^*T \) and \(T T^* \) are positive, then from (4), we conclude that that \(TT^* = T^*T \) which implies that \(T \) is normal. The normality of \(F \) follows from Proposition 1.1(i).

Proposition 3.2: If \(T, F \in L(H) \) are hyponormal operators such that \(TmF, \) then \(T \) and \(F \) are normal.

Proof. Since \(T \) is hypo normal, \(T^*T \geq T T^* \). Since \(TmF, T^*T = FF^* \) and \(TT^* = F^*F \). Thus \(F F^* \geq F^*F \). Since \(F \) is hyponormal, \(F^*F \geq FF^* \). Thus \(FF^* = F^*F \) which means that \(F \) is normal and by Proposition 1.1(i), \(T \) is normal.

Definition 3.1 \(T, F \in L(H) \) are called metrically equivalent if and only if \(\|T x\| = \|F x\| \) for all \(x \in H \).

It can be shown that \(T \) and \(F \) are metrically equivalent if, and only if, \(T^*T = F^*F \).

Proposition 3.3: If \(T, F \in L(H) \) such that \(TmF \) then \(T \) and \(F \) are metrically equivalent if, and only if, \(T \) and \(F \) are normal.

Proof. Suppose first that \(T \) and \(F \) are metrically equivalent, then \(T^*T = F^*F \). Since \(TmF, T^*T = FF^* \) which implies that \(F^*F = FF^* \). Thus \(F \) is normal. Hence, by Proposition 1.1(i), \(T \) is normal.

Conversely, suppose that \(T \) and \(F \) are normal operators then \(T^*T = TT^* \) and \(F^*F = FF^* \). Since \(TmF, F^*F = T T^* = T^*T \). Thus \(T \) and \(F \) are metrically equivalent.
Corollary 3.1: If T, F ∈ L(H) such that T is normal and TmF, then T = UF for some unitary operator U.

Proof. Since T is normal and TmF, then by Proposition 1.1(i), F is normal. Thus, by Proposition 3.3, T and F are metrically equivalent. Let U: F(H) → T(H) be defined by UF(x) = T(x) for all x ∈ H, then one can show that U is linear and bijective. Now ||UF(x)|| = ||Tx|| and since T and F are metrically equivalent ||Tx|| = ||Fx|| for all x ∈ H. Thus ||UF(x)|| = ||Fx|| which means that U is isometric. Thus, by (1), Theorem 1, p. 145, U is unitary and T = UF.

4. In section four, we give characterizations of partial isometries and unitary operators in terms of the mutually normal relation.

Proposition 4.1: If T ∈ L(H) then T is unitary if, and only if, TmT⁻¹. Proof. Suppose first that T is unitary then T⁻¹ is also unitary. Thus, by Proposition 1.0(iv), TmT⁻¹.

Now suppose that TmT⁻¹ then T*⁻¹ = (T⁻¹)*(T⁻¹)⁻¹ = (T*⁻¹)⁻¹. Thus (T*⁻¹)² = I.

Since T*⁻¹ is always positive, T*⁻¹ = I. Similarly one can show that T⁻¹ = I. Thus T* = T⁻¹ which implies that T is unitary.

Definition 4.1 The Moore-Penrose pseudoinverses A⁺ of an operator A ∈ L(H) is characterized by the following equations

It is obvious that A⁺ A and AA⁺ are projections.

Theorem 4.1: If T, F ∈ L(H) have Moore-Penrose pseudoinverses T⁺ and F⁺ respectively, then:

(i) (T⁺)⁺ = T
(ii) (T⁺)⁺ = (T⁺)*
(iii) (TT⁺)⁺ = (T⁺)* T⁺ and (T*⁻¹)⁺ = T⁺ (T⁺)*.

Proof: ([2], p. 8)

Proposition 4.1: If T ∈ L(H) then T is a partial isometry if, and only if, TmT⁺.
On Mutually Normal Operators

Proof. Suppose that T is a partial isometry, then by ([1],p.153)

\[T = TT^*T. \]

(5)

Since $T = TT^*T$,

\[T^* = T^*TT^*. \]

(6)

Using (5) and (6) above we get

\[TT^* = TT^*T T^*TT^+ \]

\[= TT^*TT^+ \]

\[= TT^+. \]

Thus $TT^* - TT^+ = 0$ which implies that $T(T^* - T^+) = 0$. Since T is one-to-one, $T^* - T^+ = 0$ which means that $T^* = T^+$. Since TmT^* for any $Te L(H)$, TmT^+.

Conversely, suppose that TmT^+ then $TT^* = (T^+)^* T^+$ which implies that $TT^*TT^* = TT^*(T^+)^* T^+ = T(T^+ T^*) T^+ = TT^+ TT^+ = TT^+$. Thus $(TT^*)^2$ is a projection which implies that TT^* is a projection, or T is partially isometric.

Proposition 4.2: $Te L(H)$ is unitary if, and only if, TmI.

Proof. Let TmI then $T^*T = TT^* = I$. Thus T is unitary. Suppose now that T is unitary, then, by Proposition 1.0(iv), TmI.

Acknowledgment.

The author gratefully acknowledges the constructive comments made by the referees.

المؤثرات ثنائية التعامد

عذنان جبريل

ملخص

في هذا البحث نعرف علاقة ثنائية التعامد للمؤثرات على فضاء هيلبرت، نثبت أن هناك العديد من الخصائص المشتركة للمؤثرات ثنائية التعامد. كذلك نحدد بعض المؤثرات بدلاً هذه العلاقة.
References

