Yarmouk University
Faculty of Science
Chemistry Department

Synthesis and characterization of New Schiff-Base
crown ethers derived from salicylaldehyde and their
complexation.

By:
Enaam Bassam Naghnaghia

Supervisor: Dr. Shehadeh Mizyed

Co-Advisor: Prof. Dr. Deeb Marji).

December, 2012
synthesis and characterization of New Schiff-Base crown ethers
derived from salicylaldehyde and their complexation

By

Enaam Bassam Naghnagia
B. Sc., Arab American University-Jenin, 2009.

Thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at Yarmouk University, Chemistry Department, Irbid,

Approved

Shehadeh Mizyed (Supervisor)
Associate Professor of Organic Chemistry/ Yarmouk University.

Deeb Marji (Co-Advisor)
Professor of Physical Chemistry/ Yarmouk University.

Riyadh Sayneh (Member)
Associate Prof. Physical Chemistry/ Yarmouk University.

Abdel Monem Rawashdeh (Member)
Associate Professor of Organic Chemistry/ASRF.

Date of thesis presentation: December 12, 2012

II
DEDICATION

To the four pillars of my life: God, my family, my homeland, and my supervisor.

I might not know where the life's road will take me, but walking with you, God, through this journey has given me strength.

My family, Mom, Daddy, Shayma, Wissam, Wasim, Ayat, Hussein. You are one of nature's masterpieces. Mom, you have given me so much, thanks for your faith in me and for your prayers and devotion. Daddy, you have given me a lot of freedom to choose my way, without your confidence I couldn't pass this way.

My Homeland, Palestine, belonging to you have given me a lot of confidence, power, proud, and love to all people around me here, these feelings support me to do my best.

My supervisor, Dr. Shehadeh, deep thanks from the deepest part of my soul to you for teaching me that I should never surrender, thanks for being father to me here in Jordan, I appreciate the time you have given to me listening to me, without your support I couldn't be what I'm now.

Enaam

12/12/2012
ACKNOWLEDGMENTS

I gave all honor and praise to almighty Allah, because without direction and guidance of almighty Allah my life would be meaningless. I would like to express my thanks German Academic Exchange Service (DAAD, the donor of my scholarship, to complete my Master Degree. Also I would like to express my deepest gratitude to my research supervisor, Dr. Shehadeh Mizyed, who taught me how to think like a scientist, working as a team player, for his constant encouragement and invaluable guidance when needed most, for trusting my abilities and giving me the opportunity to be one of his student. I’m glad to have been a part of such an innovative team. I would like to express my thanks to my Co-advisor Prof. Dr. DeebMarij for his advices and helpful directions, for his encouragement through this work. I acknowledge Dr. Khalid Abu Khadra for his efforts to complete this work, also I would like to thank Dr. Yasser Al-Haj For his Help in Mass Spectrometer Measurement and Prof. Dr. Ayman Hammoudeh for his helpful information he taught it to me in Spectroscopy. Also I would like to thank Ayat Foudeh for NMR measurements. I acknowledge my Committee members: Dr. Riyadh Saymeh and Dr. Abdel Monem Rawashdeh. I’m so grateful to my family for their encouragement, rosary and constant genuine love that helped me to keep going when I felt like quitting. I acknowledge my small sister Shayma for her support and understanding. Thanks to all my friends, your friendships are valuable, special thanks to Salima Abajjah, Ebtisam Aleteiwi, Tala Quran and Ayat Foudeh your support and kindness helped me too much. Last but not least, I would like to thank all employees in the chemistry Department with a special mention to Fadwa Bani-Hani for her kindness. Thank you all. Thanks to Jordan which Embraced me.
List of Contents

Dedication ... III

Acknowledgment ... IV

Table of Acronym Words .. VIII

List of Figures .. IX

List of Schemes .. XII

List of Tables .. XIII

Abstract .. XIV

Chapter One

Introduction

1. Macrocyclic Ligands ... 1

 1.1 Polyazamacrocycles ... 3

 1.2 Polyoxamacrocycles .. 4

 1.3 Mixed Donor Macrocycles .. 7

 1.4 Schiff Bases .. 8

 1.4.1 Structure of Schiff base .. 8

 1.4.2 Schiff bases Formation .. 9

 1.4.3 Synthetic importance of Schiff Bases ... 10

 1.4.4 Synthesis of some known Schiff base and Schiff base crown ethers 12

 1.4.4. A Design of Macrocyclic Schiff bases Ligands by coordination Template Effect ... 12

 1.4.4. B Preparation of Azacrown ether Schiff bases 14

 1.5.1 Supramolecular Chemistry ... 23

 1.5.2 Complexation Study .. 25

 1.6 Goals of the Current Study ... 27
Chapter two

Experimental:

2.1 Materials and equipment ... 29

2.2 Synthesis of o-(2-bromoethoxy) benzaldehyde 30

2.3 General procedure for the preparation of Schiff base crown ethers ... 30

2.3. A. Synthesis of 5,6,11,12,15,16,19,20-tetrabenzo-1,10-dioxa- 4,7-diaza-14,17-diaminocycloecicosan-13,18-diene (Ligand 1) 31

2.3. B. Synthesis of 5,6,15,16-di(3,4-dimethylbenzo)-11,12,19,20-dibenzo-1,10-dioxa-4,7-diaza-14,17-diaminocycloecicosan-13,18-diene (Ligand 2) ... 32

2.3. C. Synthesis of 5,7,16,18-dinaphthaleno-12,13,21,22-dibenzo-1,11-dioxa-4,8-diaza-16,19-diaminocycloecicosan-14,20-diene (Ligand 3) ... 33

2.3. D. Synthesis of 14,15,25,26-di benzo -1, 13-dioxa-4, 10-diaza-17, 23-diamino cyclohexaeicosan -16,24-diene (Ligand 4) 35

2.4 General procedure for the preparation of metal complexes 36

2.5 Antimicrobial susceptibility testing 37
Chapter Three

Results and Discussion

3. A.1 Reaction of Salicyaldehyde with 1, 2- dibromoethane40
3. A.2 Reaction of o-(2-bromoethoxy) benzaldehyde with o-
phenylenediamine ...40
3. A.3 Reaction of o-(2-bromoethoxy) benzaldehyde with 4, 5- dimethyl-o-
phenylenediamine ...41
3. A.4 Reaction of o-(2-bromoethoxy) benzaldehyde with 1, 8-naphthalene
diamine ..43
3. A.5 Reaction of o-(2-bromoethoxy) benzaldehyde with 1, 5-
pentandiamine ..44
3. B Complexation study ..46
3. B.1 Complexation of Cu^{+2} with Ligands ..46
3. B.2 Complexation of Co^{+2} with Ligands ..46
3. C Antimicrobial susceptibility testing ..47
References ...50
Appendix ..61
Arabic Abstract ..93
List of Acronym Words

NMR Nuclear Magnetic Resonance.
MS Mass Specrometry
UV-Vis Ultraviolet-Visible Spectroscopy
IR Infrared Spectroscopy
DMSO Dimethyl Sulfoxide
TLC Thin Layer Chromatography
m.p Melting Point
d.p Decomposition Point
Ar.H Aromatic Hydrogen
D.W Distilled Water
PLC Preparative Layer Chromatography

DEPT Distortionless Enhancement By
 Polarization Transfer
r.t Room Temperature
List of Figures

Figure (1.1) Structures of some Polyaza macrocycles……………………………4
Figure (1.2) Structures of some polyoxygen macrocycles7
Figure (1.3) Structures of some Mixed Donor Macrocycles8
Figure (1.4) Examples of bioactive Schiff bases. The imine group present in each molecular structure is shaded.11
Figure (1.5) Structures of the New Synthesized Schiff Base Crown Ethers ..28
Figure (3.1) Structure of \(o-(2\text{-bromoethoxy}) \text{ benzaldehyde} \)61
Figure (3.2) I.R Spectrum for \(o-(2\text{-bromoethoxy}) \text{ benzaldehyde} \)61
Figure (3.3) \(^1\text{HNMR}(\text{CDCl}_3, 400 \text{MHz})\) Spectrum for \(o-(2\text{-bromoethoxy})\text{enzaldehyde} \) ..62
Figure (3.4) \(^{13}\text{CNMR} (\text{CDCl}_3, 100\text{MHz})\) Spectrum for \(o-(2\text{-bromoethoxy})\text{enzaldehyde} \)63
Figure (3.5) DEPT135(\text{CDCl}_3, 100\text{MHz}) for \(o-(2\text{-bromoethoxy})\text{enzaldehyde} \) ..63
Figure (3.6) Structure of Ligand 1 ...64
Figure (3.7) I.R Spectrum for Ligand 1 ..64
Figure (3.8) \(^1\text{HNMR} (\text{CDCl}_3, 400 \text{MHz})\) Spectrum for Ligand 165
Figure (3.9) \(^{13}\text{CNMR} (\text{CDCl}_3, 100\text{MHz})\) Spectrum for Ligand 166
Figure (3.10) DEPT135 (\text{CDCl}_3, 100\text{MHz}) for Ligand 166
Figure (3.11) Mass Spectrum of Ligand 1 ...67
Figure (3.12) Structure of Ligand 2 ...68
Figure (3.13) I.R Spectrum for Ligand 2 ..68
Figure (3.14) \(^1\text{H-NMR} (\text{CDCl}_3, 400\text{MHz})\) Spectrum for Ligand 269
Figure (3.15) 13C-NMR (CDCl$_3$, 100MHz) Spectrum for Ligand 2 70
Figure (3.16) DEPT-135(CDCl$_3$, 100MHz) for Ligand 2 70
Figure (3.17) Mass Spectrum for Ligand 2 .. 71
Figure (3.18) Structure of Ligand 3 ... 72
Figure (3.19) I.R Spectrum for Ligand 3 ... 72
Figure (3.20): 1H-NMR(CDCl$_3$, 400MHz) Spectrum for Ligand 3.......... 73
Figure (3.21): 13C-NMR(CDCl$_3$, 100MHz) Spectrum for Ligand 3 74
Figure (3.22): Mass Spectrum for Ligand 3 .. 75
Figure (3.23): Structure of Heterocyclic product 76
Figure (3.24): I.R Spectrum for Heterocyclic product 76
Figure (3.25): 1H-NMR (CDCl$_3$, 400MHz) Spectrum for Heterocyclic
 Product .. 77
Figure (3.26): 13C-NMR(CDCl$_3$, 100MHz) Spectrum for Heterocyclic
 product .. 78
Figure (3.27): DEPT-135(CDCl$_3$, 100MHz) for Heterocyclic product 78
Figure (3.28): Mass Spectrum for Heterocyclic product 79
Figure (3.29): Structure of Ligand 4 ... 80
Figure (3.30): I.R Spectrum for Ligand 4 .. 80
Figure (3.31): 1H-NMR (CDCl$_3$, 400MHz) Spectrum for Ligand 4 81
Figure (3.32): 13C-NMR(CDCl$_3$, 100MHz) Spectrum for Ligand 4 82
Figure (3.33): DEPT-135(CDCl$_3$, 100MHz) for Ligand 4 82
Figure (3.34): Mass Spectrum for Ligand 4 .. 83
Figure (3.35): I.R Spectra of Ligand 1 and its complex with Cu$^{2+}$............ 84
Figure (3.36): I.R Spectra of Ligand 1 and its complex with Co$^{2+}$............ 84
Figure (3.37): I.R Spectra of Ligand 2 and its complex with Cu$^{2+}$........... 85
Figure (3.38): I.R Spectra of Ligand 2 and its complex with Co$^{2+}$

Figure (3.39): I.R Spectra of Ligand 3 and its complex with Cu$^{2+}$

Figure (3.40): I.R Spectra of Ligand 3 and its complex with Co$^{2+}$

Figure (3.41): UV-Vis Spectra of Ligand 1, Cu$^{2+}$, and its complex with Cu$^{2+}$

Figure (3.42): UV-Vis Spectra of Ligand 1, Co$^{2+}$, and its complex with Co$^{2+}$

Figure (3.43): UV-Vis Spectra of Ligand 2, Cu$^{2+}$, and its complex with Cu$^{2+}$

Figure (3.44): UV-Vis Spectra of Ligand 2, Co$^{2+}$, and its complex with Co$^{2+}$

Figure (3.45): UV-Vis Spectra of Ligand 3, Cu$^{2+}$, and its complex with Cu$^{2+}$

Figure (3.46): UV-Vis Spectra of Ligand 3, Co$^{2+}$, and its complex with Co$^{2+}$

Figure (3.47): Zone of inhibition for 50μM concentration of Ligand 2 against Bacillus Cereus

Figure (3.48): Zone of inhibition for 100μM concentration of Ligand 2 against Bacillus Cereus

Figure (3.49): Zone of inhibition for 50 μM concentration of Ligand 2 against S. Aureus

Figure (3.50): Zone of inhibition for 100 μM concentration of Ligand 2 against S. Aureus

Figure (3.51): Zone of inhibition for 50 μM concentration of Ligand 2 against Candida albicans

Figure (3.52): Zone of inhibition for 100 μM concentration of Ligand 2 against Candida albicans
List of Schemes

Scheme (1-1) Structure of dibenzo-18-crown-6 .. 5
Scheme (1-2) Schiff bases formation from aldehydes or ketones 8
Scheme (1-3) General mechanism for the formation of Schiff base 10
Scheme (1-4) Formation of Macrocyclic Complexes by the metal
Template Method by Curtis .. 13
Scheme (1-5) Synthesis of Macrocyclic Azomethines by direct
Condensation .. 14
Scheme (1-6) Synthesis of Heterocyclic Products instead of Schiff
Bases ... 15

Scheme (1-7) Synthesis of Schiff bases and heterocyclic By- products..... 16

Scheme (1-8) Synthesis of Schiff base by Condensation of diamino compound
with dicarbonyl compound. .. 17
Scheme (1-9) Menif Synthesized aza crown ether 17
Scheme (1-10) Habibi and Izadkhah Synthesized Aza crown Ether 18
Scheme (1-11) Brunner and Schiessling Synthesized optically active
Macrocyclic Schiff Bases ... 18
Scheme (1-12) New Synthesized Schiff base crown ether 19
Scheme (1-13) New Synthesized Schiff Bases Crown Ethers 20
Scheme (1-14) New Synthesized Schiff Bases Crown Ethers 21
Scheme (1-15) New Synthesized reduced Schiff Bases Crown 22
Ethers