Yarmouk University

Faculty of Science

Department of Biological Sciences

In Vitro Antimicrobial Activity of Crude Extracts and Their Liquid Fractions Obtained From Two Solanaceae Species in Jordan

By

Israa Al-Shatnawi

Supervisor

Prof. Ghassan Kanan

Co-supervisor

Prof. Ahmad El-Oqlah

Program: Biology
In Vitro Antimicrobial Activity of Crude Extracts and Their Liquid Fractions Obtained From Two Solanaceae Species in Jordan

By: Israa Al-Shatnawi

B. Sc. Biological Sciences, Yarmouk University, 2008

A thesis submitted in partial fulfillment of the requirements for the degree of master of Biology in the department of Biological Sciences, Yarmouk University, Irbid, Jordan.

Approved by:

Prof. Ghassan Kanan --------------------------------- Chairman

Professor of Molecular genetics, Yarmouk University.

Prof. Ahmad El-Oqlah --------------------------------- Co-advisor

Professor of Botany, Yarmouk University.

Prof. Jamil Lahham --------------------------------- Member

Professor of Botany, Yarmouk University.

Dr. Fawzi Al-Sheyab --------------------------------- Member

Associate Professor of Molecular Microbiology, Jordan University of Science and Technology.
Dedication

To my father, mother, brothers and sisters

To whom supported me,

To every one helped me.
Acknowledgements

The accomplishment of this work would not have been possible without the kind and generous support that I have received from many people. Without their help, the road ahead would have been a long and difficult one.

Sincere thanks to my supervisor, Prof. Ghassan Kanan, for his guidance, and encouragement that has seen me through to the completion of my studies. Most particularly, for restoring my sense of self confidence by showing his faith in my own abilities and for fostering a learning environment that encouraged creative thought and the free expression of his ideas. The guidance, encouragement and support of Prof. Ahmad El-Oqlah have been an outstanding model, without him the body of work that is presented in this thesis could not have been accomplished. Thanks are due to Prof. Jamil Laham for his continued support over the duration of my study, and for his great comments in the experimental research. Thanks one due to Dr Khalid Battainah for his continuous encouragement to press on, and to not give up, without him the body of work that is presented in this thesis could not have been accomplished. Also I would
like to thank Dr Emad Hussein for helping me during experimental work. Thanks are also due to Dr Wesam Elkhateeb for his advice about the project. I would like to thank all members at the Department of Biology, including Faculty of Science and Laboratories for their support, encouragement, genuine interest, discussion, critical evaluation and invaluable advice on the different procedures of my research, Sincere thanks are due to Miss. Dalal Awad, Muthana Alkaraki, Heba Obeidat, Leena Abu-Eraq, Layal Abu-Zreaiq, Heba Obeidat, Ahmad Abu-Hassouneh, Mohammad Abu-Qamar, Abdsalam Gahmani, Mohammad Atehli, Faten Shehabat, Noor Kamayseh and May Abu-serdan, for their advice and lengthy discussions about the project and the thesis.

This acknowledgment would not be completed without mentioning of my closest friend, my brother Dr Mohamad for providing me with his support and patience. Finally, I would like to express my deepest gratitude and thanks to my family for their unconditional love, support, patience and care, without which undertaking to completion of these studies would not have been possible. A special thanks to my father and my mother for their support to achieve my master study. The pride you have in me has allowed me to get through this degree, even in its most challenging time.
Table of Contents

Dedication ... III
Acknowledgements .. IV
Table of Content .. VI
List of Tables .. XIII
List of Figures .. XX
List of Appendices .. XXIII
Abstract .. XXIV

Chapter One: Introduction .. 1
1.1. 1.1. Overview ... 1
1.2 Medicinal Plant and Antimicrobial Activity 3
1.3. Tested Plants ... 4
1.3.1. *Withania somnifera* ... 4
1.3.2. *Solanum elaeagnifolium* 6
1.4. Rationale ... 8
1.5. Objectives ... 9
Chapter Two (Literature Review) 10
2.1 Medicinal Plants and Secondary Metabolites 10

2.2. Toxicity and Resistance to Chemical Agents 13

2.3. Extracts of Medicinal and Antimicrobial Control Options ... 14

2.4. Efficacy of Solanum sp. (Solanaceae) Methanolic and Acetone Extracts as Antibacterial and Antifungal Agents... 15

2.5. Efficacy of Solanum sp. (Solanaceae) Organic Solvents Extracts as Compared to Fractions and Standard Drugs...... 16

2.6. Efficacy of Solanum elaeagnifolium L. (Solanaceae) Extracts as Antimicrobial Agents 18

2.7. Efficacy of Withania somnifera (Solanaceae) Methanolic Extracts as Antimicrobial Agents 19

2.8. Efficacy of W. somnifera L. (Solanaceae) Extracts as Antimicrobial Agents ... 20

Chapter Three: Materials and Methods.. 23

3.1. Tested Plants .. 23

3.2. Tested Fungal Species .. 23

3.3. Tested Bacterial Species .. 23

3.4. Fungal and Bacterial Growth Media 24

3.5. Purification of Fungal Isolates 24

3.6 Extractions of Plant Compounds 24
5.13.6. Examination of the Plates ... 37

5.13.7. Treatment with Concentrated Sulphuric Acid 37

Chapter Four: Results ... 39

4.1 Antimicrobial Activity of the Tested Solanaceae Plant and Well Diffusion Method 39

4.1.1 Antimicrobial Activity of W. somnifera Extract Ethanolic and Methanloic Crude Extracts Using Agar Well Diffusion Method .. 39

4.1.1.1 Antimicrobial Activity of W. somnifera Leaves 39

4.1.1.2 Antimicrobial Activity of W. somnifera Fruits Extract 44

4.1.1.3 Antimicrobial Activity of W. somnifera Stems Extract 48

4.1.2 Antimicrobial Activity of S. elaeagnifolium Extract Ethanolic and Methanloic Crude Extracts Using Agar Well Diffusion method ...

4.1.2.1 Antimicrobial Activity of S. elaeagnifolium Leaves 52

4.1.2.2 Antimicrobial Activity of S. elaeagnifolium Stems 56

4.2. Antimicrobial Activity of Solanaceae Plant Using Amended agar Method

4.2.1 Antimicrobial Activity of W. somnifera Extract 60

Ethanolic and Methanloic Crude Extracts Using Amended Agar Method.
4.2.1.1 Antimicrobial Activity of *W. somnifera* Leaves 60

4.2.1.2 Antimicrobial Activity of *W. somnifera* Fruits 70

4.2.1.3 Antimicrobial Activity of *W. somnifera* Stems 78

4.2.2. Antimicrobial Activity of *S. elaegnifolium* Extract 87
Ethanol and Methanloic Crude Extracts Using Amended
Agar Method.

4.2.2.1 Antimicrobial Activity of *S. elaegnifolium* Leaves... 87

4.2.2.2 Antimicrobial Activity of *S. elaegnifolium* Stems.... 94

4.3 Antimicrobial Activity of *Solanaceae* Plant Fraction 100
Using Agar Well Diffusion Method........

4.3.1 Antimicrobial Activity of *W. somnifera* Extract 100
Ethanol and Methanloic for Fraction Extracts Using Agar
Well Diffusion Method..

4.3.1.1 Antimicrobial Activity of *W. somnifera* Leaves H₂O 100
Fraction..

4.3.1.2. Antimicrobial Activity of *W. somnifera* Leaves 105
Methanol Fraction...

4.3.1.3. Antimicrobial Activity of *W. somnifera* Leaves 110
Hexane Fraction..

4.3.1.4. Antimicrobial Activity of *W. somnifera* Stems H₂O 114
Fraction..

4.3.1.5. Antimicrobial Activity of *W. somnifera* Stems 118
Methanol Fraction..
4.3.1.6. Antimicrobial Activity of *W. somnifera* Stems 124
Hexane Fraction ...

4.3.1.6. Antimicrobial Activity of *W. somnifera* Fruits H₂O 129
Fraction ...

4.3.1.7. Antimicrobial activity of *W. somnifera* Fruits 133
Methanol Fraction ...

4.3.1.8. Antimicrobial Activity of *W. somnifera* Fruits Hexane 137
Fraction ...

4.3.2. Antimicrobial Activity of *S. elaeagnifolium* Extract 142
Ethanolic and Methanloic for Fraction Extracts Using Agar
Well Diffusion Method ...

4.3.2.1 Antimicrobial Activity of *S. elaeagnifolium* Leaves 142
H₂O Fraction ..

4.3.2.2 Antimicrobial Activity of *S. elaeagnifolium* Leaves 147
Methanol Fraction ...

4.3.2.3 Antimicrobial Activity of *S. elaeagnifolium* Leaves 151
Hexane Fraction ..

4.3.2.4 Antimicrobial Activity of *S. elaeagnifolium* Stem 155
H₂O Fraction ..

4.3.2.5. Antimicrobial Activity of *S. elaeagnifolium* Stem 160
Methanol Fraction ...

4.3.2.6. Antimicrobial Activity of *S. elaeagnifolium* Stem 165
Hexane Fraction ..

4.4. Phytochemical Analysis for Secondary Metabolites in 170
Tested Fractions of Ethanolic and Methanolic Extracts of *W.
somnifera and S. elaeagnifolium Parts

4.5. Thin Layer Chromatography (TLC) for Components 172
Present in Liquid Fractions of W. somnifera and S.
elaeagnifolium

Chapter Five ... 192
Discussion ... 192
5.1 Overview .. 192
5.2 W. somnifera .. 193
4.3 S. elaeagnifolium ... 198
Chapter Six ... 207
Conclusion ... 207
6.1 Overview .. 204
6.2 Conclusions .. 204
6.3. Future Directions (recommendation) 206
References ... 207
Appendices ... 223