Prevalence and evaluation of vitamin B12 deficiency among healthy Libyan people in Zelitin governorate

By:
Karima Ramadan Edawib
ID:2009920015

Supervisor:
Prof. Mahmud Abussaud

Program: Biotechnology

2012/12/12
Prevalence and evaluation of vitamin B12 deficiency among healthy Libyan people in Zelitin governorate

By:
Karima Ramadan Edawib

A Thesis submitted in fulfillment of the requirements for the degree of Master of Biotechnology in the Department of Biological Sciences, Yarmouk University, Irbid, Jordan.

Approved by:
Prof. Mahmud Abuassaud—Supervisor

Professor of Microbiology, Yarmouk University.

Dr. Khalid Abukhadrab—Member

Biochemistry, Yarmouk University.

Dr. Ahmad Abuzytone—Member

Human Physiology, Al-albayt University.
Dedication

Thanks Allah
Who guided me in every step of my way and gave me his blessings

I dedicate this thesis to:

My country (Libya)

My husband the source of patience and the reason of my success

My Mother the source of love

My father the light of my life

My family the source of power

My dear children Aisha and Moad the source of hope

My wisdom and knowledge
Acknowledgement:

Above all I am grateful to Allah who granted me the strength and patience throughout my study until the completion of this work.

I wish to thank all those who helped me to complete my thesis:

I am very grateful to my supervisor: Prof. Mahmud Abussaud thanks for giving me the encourage and the strength.

I would like to express my appreciation to Dr. Khalid Abukhadrah for helping me in writing the thesis.

Thanks to Prof. Kamal Mansi who gave me the idea to do this research and thanks for giving me the support with his many fruitful discussions.

Special thanks to the Educational Central Zelitin Hospital administration for helping me to make this study in the hospital lab.

Also, I would like to thanks the laboratory technicians in Educational Central Zelitin Hospital for their time, patience and helping me during the work in the lab Muhammad Benhosain and Somia.

I just thank the Robia Company for helping me to provide the reagents to do this research.

My gratitude also goes to the Al-mosaed, Al-tashkesy, Al-kesahei and Alharsha Labs, and their workers for helping me to collect the samples.

I am very grateful to my colleagues and friends.

I must thank my husband Milad Arzni who assisted me during the field work and in editing the thesis and my family for helping me to run the experiment.

Finally, I would like to express my deepest gratitude and thanks to my father, my mother and my children Aisha and Moad for their moral support during my study.
Table of Contents

Dedication .. I
Acknowledgements ... II
Table of Contents .. III
List of Tables .. V
List of Figures .. VI
List of Abbreviations ... VII
Abstract .. IX

CHAPTER ONE

1.1. Introduction ... 1
1.2. Rationale ... 6
1.3. Objectives .. 7

CHAPTER TWO

2. Literature Review .. 8

2.1. Vitamin B12 ... 8
2.1.1. Structure .. 8
2.1.2. Sources ... 9
2.1.3. Function ... 9

2.2. Vitamin B12 binding proteins and their receptors .. 10
2.2.1. Nomenclature .. 10
2.2.2. Intrinsic factor .. 11
2.2.3. Haptocorrin .. 11
2.2.4. Transcobalamin .. 11

2.3. Vitamin B12 homeostasis ... 12
2.3.1. Absorption .. 12
2.3.2. Excretion ... 12

2.4. Vitamin B12 deficiency .. 12
2.4.1. Causes of vitamin B12 deficiency ... 13
2.4.1.1. Impaired absorption ... 13
2.4.1.1.1. Pernicious anemia .. 13
2.4.1.1.2. Food-vitamin B12 malabsorption .. 14
2.4.1.3. Other causes for vitamin B12 malabsorption 14
2.4.1.2. Dietary insufficiency ... 15
2.4.1.3. Other causes for vitamin B12 deficiency 15
List of Tables:

Table 3.1. Population and numbers of samples in Zelitin regions…………………..23

Table 3.2. The measured levels of CBC variables…………………………………...27

Table 4.1. Mean of vitamin B12 level………………………………………………34

Table 4.2. Distribution of subjects according to serum vitamin B12 level…………35

Table 4.3. Distribution of serum vitamin B12 levels of the study group in Zelitin governorate according to socio-demographic and personal data studied……………36

Table 4.4. Distribution of serum vitamin B12 level according to different studied variables……………………………………………………………………………...40

Table 4.5. Hematological parameters and vitamin B12 level…………………41

Table 4.6. Correlation between count of vitamin B12 and CBC variables……………………………………………………………………………...43

Table 4.7. Multiple logistic regression model, predictors for vitamin B12 deficiency………………………………………………………………………….44
List of Figures:

Figure 2.1. Structural formula of vitamin B12. The side chain R is CN in cyanocobalamin, 5’-deoxy-5’-adenosyl in adenosylcobalamin, methyl in methylcobalamin, and OH in hydroxycobalamin……………………………………...8

Figure 2.2. Synthesis of methionine from homocysteine. Cbl indicates cobalamin………………………………………………………………………….....10

Figure 2.3. Conversion of Methylmalonyl-CoenzymeA (CoA) to succinyle-CoA. Ado-Cbl indicates adenosyl-coblamin……………………………………………….10

Figure 2.4. Absorption and transport of vitamin B12………………………………13

Figure 4.1. Serum vitamin B12 among males and females……………………37

Figure 4.2. Serum vitamin B12 level (pg/ml) versus Zelitin regions……………..39
List of Abbreviations:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ado-Cbl</td>
<td>Adenosylcobalamin</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>CBC</td>
<td>Complete Blood Counts</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>CN-Cbl</td>
<td>Cyanocobalamin</td>
</tr>
<tr>
<td>HC</td>
<td>Haptocorrin</td>
</tr>
<tr>
<td>HCT</td>
<td>Hematocrit</td>
</tr>
<tr>
<td>Hcy</td>
<td>Homocystine</td>
</tr>
<tr>
<td>HGB</td>
<td>Hemoglobin</td>
</tr>
<tr>
<td>holoTC</td>
<td>Holotranscobalamin</td>
</tr>
<tr>
<td>IF</td>
<td>Intrinsic factor</td>
</tr>
<tr>
<td>K2EDTA</td>
<td>Dipotassium Edetate</td>
</tr>
<tr>
<td>μ</td>
<td>Micro</td>
</tr>
<tr>
<td>MCH</td>
<td>Mean Corpuscular Hemoglobin</td>
</tr>
<tr>
<td>MCHC</td>
<td>Mean Corpuscular Hemoglobin Concentration</td>
</tr>
<tr>
<td>MCV</td>
<td>Mean Corpuscular Volume</td>
</tr>
<tr>
<td>Me-Cbl</td>
<td>Methylcobalamin</td>
</tr>
<tr>
<td>MEIA</td>
<td>Microparticle Enzyme Immunoassay</td>
</tr>
<tr>
<td>MMA</td>
<td>Methylmalonic acid</td>
</tr>
<tr>
<td>MPV</td>
<td>Mean Platelet Volume</td>
</tr>
<tr>
<td>OH-Cbl</td>
<td>Hydroxocobalamin</td>
</tr>
<tr>
<td>OR</td>
<td>Odds Ratios</td>
</tr>
<tr>
<td>P-LCR</td>
<td>Platelet-Large Cell Ratio</td>
</tr>
<tr>
<td>PDW</td>
<td>Platelet Distribution Width</td>
</tr>
<tr>
<td>PLT</td>
<td>Platelet</td>
</tr>
<tr>
<td>pg/ml</td>
<td>Picogram per milliliter</td>
</tr>
<tr>
<td>RBC</td>
<td>Red Blood Cell</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RDW-CV</td>
<td>Red Blood Cell Distribution Width, Coefficient of variation</td>
</tr>
<tr>
<td>RDW-SD</td>
<td>Red Blood Cell Distribution Width-Standard Deviation</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviations</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Sciences</td>
</tr>
<tr>
<td>SST</td>
<td>Serum-separating tubes</td>
</tr>
<tr>
<td>tHcy</td>
<td>total Homocysteine</td>
</tr>
<tr>
<td>TC</td>
<td>Transcobalamin</td>
</tr>
<tr>
<td>USA</td>
<td>United States Of America</td>
</tr>
<tr>
<td>WBC</td>
<td>White Blood Cell</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>BSTEP</td>
<td>Backward Stepwise</td>
</tr>
</tbody>
</table>
Prevalence and evaluation of vitamin B12 deficiency among healthy Libyan people in Zelitin governorate

By:
Karima Ramadan Edawib
ID: 2009920015
Supervisor:
Prof. Mahmud Abussaud

Abstract

This study aimed to estimate the status of serum vitamin B12 level in healthy Libyan people in Zelitin governorate (Sook Aljoma, Zelitin center, Mager, and Sook Altholata). Also, to examine the relationship between vitamin B12 deficiency and demographic data, chronic illness, dietary habits, haematological parameters and symptoms related to low vitamin B12 levels e.g. loss of appetite and memory loss. One hundred and eighty eight subjects (110 males and 78 females) were volunteered in the study. Participants were asked to fill a detailed questionnaire that covered medical data. The subjects were chosen to be healthy in different ages then they were divided into five age groups in both males and females and four regions in Zelitin. A total of serum vitamin B12 was measured for all volunteers. The prevalence of serum vitamin B12 deficiency (B12 level lower than 208 pg/ml) was 42.6%. The mean and SD values of vitamin B12 were 243.7 pg/ml and 156.1 pg/ml, respectively. No significant differences in the serum B12 level were found between different age groups, gender and Zelitin regions. The older age group (>50 years) showed the highest percent of deficiency of vitamin B12 (45.5%). The serum B12 level was significantly lower among smokers compared to non-smokers in the subjects \((P = 0.000) \). Vitamin B12 deficiency was associated with smoking, memory impairment,
and loss of appetite. The high frequency of low vitamin B12 leads to development of the correlated symptoms. Vitamin B12 should be evaluated in different places in Libya and correct this problem.

Keywords: Serum vitamin B12 deficiency, Libyan people, Zelitin governorate.