Effect of 829 C > T polymorphism located near miR-24 binding site in Dihydrofolate Reductase on gene Expression in leukemia patients

Submitted by:
Alia Ghazi Sawaie

Supervisor:
Dr. Khalid M. Al-Batayneh

Department of Biological Sciences
Faculty of Science
2013
Effect of 829 C > T polymorphism located near miR-24 binding site in Dihydrofolate Reductase on gene Expression in leukemia patients

Submitted By:

Alia Ghazi Nahar Sawaie

B.Sc. Biology/ Yarmouk University (2009)

A Thesis Submitted in Partial Fulfillment of The Requirements of The Master’s Degree of Biotechnology in the Department of Biological Sciences

Yarmouk University, Irbid, Jordan

Approved by:

Dr. Khalid M. Al- Batayneh.. Chairman
Associate Professor of Biochemistry and Molecular Biology, Yarmouk University

Dr. Wesam M. Al- Khateeb.. Member
Assistant Professor of Plant Molecular Biology, Yarmouk University

Dr. Mahmoud H. Ayeshe.. Member
Assistant Professor of Internal Medicine and Hematology, Jordan University Of Science And Technology
Dedication

This work is dedicated to my family, to mother Reema Al Syoof for her continuous motivation and push all through my days. To my father Ghazi Sawaie for his nonstop support. To my beloved sisters; Zain, Rania and Rozanah. To my fiancé Mohammad Attili for backing me up all along. To my dear brother in law Khalid Khasawneh and cousin Randa Al Qudah for their encouragement and support. Finally to my precious nephews; Ibrahim and Hamzeh.

Thank you all for being in my life.
Acknowledgment

I would like to express my deepest appreciation to my supervisor Dr. Khalid Al Batayneh, for his kindness and encouragement all these past years. I would also like to thank the committee members; Dr. Wesam Al Khateeb and Dr. Emad Malkawi for their kindness and support. To Dr. Wesam I say thanks for everything that you have done to help me through all these years. Special thanks for Dr. Mahmoud Ayesh for helping me to accomplish this work and for being a member in this committee.

I would like to thank all of my colleagues and friends in the Department of Biological Sciences in Yarmouk University; especially Ruba Al Fasid, Ghadeer Al Ghabbiesh, Duaa Fayad, Sameera Emeigal, Mai Abu Serdaneh and Hyfa Al Zghoul. My appreciation to Ibrahim Baydoun, Kifah Qadoura and Abd Al Rahman Rawashdeh for their continuous help all through the way. Special thanks to my best friend Eman Bahar, for her support, help and being the one I relied on through my journey. My deepest appreciation to Mrs. Dalal Awad for her help and encouragement.

To my fiancé Mohammad Attili I say thank you so much for being a great friend and colleague, your support has helped me through these years.

Finally I would really like to thank all of the nurses in the King Abdulla University Hospital in the 10D section and the chemotherapy unit, for their help, I couldn’t have done anything without you.
Table of contents

Dedication .. I
Acknowledgment .. II
Table of Contents ... III
List of Figures .. VII
List of Tables .. X
List of Appendices .. XI
Abbreviations .. XII
Abstract ... XIV

Chapter 1 Introduction 1
1.1 Introduction ... 1
1.2 Rational and objectives 6

Chapter 2 Literature Review 7
2.1.1 DHFR overview 7
2.1.2 Dhfr expression 8
2.1.3 DHFR, leukemia and MTX 9
2.1.4 DNA variations in DHFR and leukemiogenesis 11
2.2.1 Overview on miRNAs 12
2.2.2 miRNAs: Biogenesis and function 13
2.2.3 miRNA clustering 15
2.2.4 miR-24: A closer look 15
2.2.5 miR-24: Function and target 16
2.2.6 miRNAs and carcinogenesis........... 18
2.2.7 miR-24 and carcinogenesis........... 18
2.2.8 Role of miRNAs in hematopoiesis... 19
2.2.9 miR-23a cluster members and myeloid cells
development.. 19
2.2.10 miRNAs as potential biomarkers in
Malignancies... 20

Chapter 3 Material and Methods.............. 22

3.1 Subject recruitment......................... 22
3.2 Blood collection............................. 22
3.3 Sample analysis.............................. 22
 3.3.1 Blood fractionation.................... 22
3.3.2 Dhfr 3’UTR polymorphisms............ 23
 3.3.2.1 Genomic DNA extraction............ 23
 3.3.2.2 Polymerase chain reaction (PCR).... 24
3.3.3 DHFR enzyme assay....................... 26
 3.3.3.1 DHFR purification from WBCs...... 26
 3.3.3.2 Protein concentration determination.. 26
 3.3.3.3 Spectrophotometric determination of
 DHFR activity.................................... 27
3.3.4 Statistical analysis....................... 28
Chapter 4 Results .. 29

4. Study group characteristics 29

4.1. Sequencing of Dhfr gene 30

4.1.1 DNA extraction and PCR 30

4.1.2 Sequencing results 32

4.1.2.1 The SNP 829 C>T 36

4.1.2.2 Ensembl reported SNPs 41

4.1.2.3 Novel SNPs 44

4.1.2.4 The prevalence of the common SNPs in the Jordanian population 52

4.1. DHFR enzyme activity 55

4.2.1 Protein concentration and BSA standard Curve .. 56

Chapter 5 Discussion 58

5.1 Sequencing results 58

5.2 The effect of Ensembl reported SNPs on Leukemeogenesis 59

5.3 Novel SNPs .. 60

5.4 DHFR assay .. 61

Chapter 6 Conclusion 63

Chapter 7 Recommendations 65
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The NADPH dependent conversion of dihyrofolate into tetrahydrofolate by DHFR enzym</td>
<td>5</td>
</tr>
<tr>
<td>2-a</td>
<td>One carbon transfer cycle representing DHFR function</td>
<td>7</td>
</tr>
<tr>
<td>2-b</td>
<td>DHFR position on chromosome 5</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>The structure of tetrahydrofolate (A) in comparison to MTX (B)</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>The effect of the SNP (829C>T) on miR-24 binding site. This polymorphism leads to MTX resistance in cancer patients</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>miRNA processing</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>mir-24 targets: transcription factors and genes</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>Sequence for forward (F) and reverse (R) primers used in the PCR reaction</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>Representative genomic DNA extracted from control subjects</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>The 171 bp product produced by primer set (a) for samples L1-L22</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>The 337 bp PCR product for control samples (C216-C257) produced from F and R primers in set b</td>
<td>32</td>
</tr>
<tr>
<td>11</td>
<td>The location of the studied SNPs in Dhfr gene</td>
<td>34</td>
</tr>
</tbody>
</table>
12 An illustrative figure for part of the Dhfr 3’ UTR that was amplified using primer sets “a” and “b”.

13 Electropherogram of the 3’ UTR amplicon from primer set b from subject C2

14 Heterozugous genotype for 829 C>T SNP for sample C2.

15 Frequencies of the 829 C>T

16 Frequency of the A>T (rs 7387) SNP

17 Frequency of the A>G (rs 190942643) SNP

18 Frequency of the T>C (rs 56039509) SNP

19 Frequency of the A>G (rs 180955689) SNP

20 part of the chromatogram for sample L2

21 Piece of the chromatogram for sample L4

22 . Piece of the chromatogram for sample L19

23 The frequency of T>C SNP located at position 79924571

24 The frequency of C>A SNP located at position 79924570
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>The frequency of the C insertion.</td>
</tr>
<tr>
<td>26</td>
<td>The frequency of the first A insertion</td>
</tr>
<tr>
<td>27</td>
<td>The frequency of the second A insertion</td>
</tr>
<tr>
<td>28</td>
<td>The prevalence of the T>C SNP in the Jordanian population</td>
</tr>
<tr>
<td>29</td>
<td>The prevalence of the C>A SNP in the Jordanian population</td>
</tr>
<tr>
<td>30</td>
<td>The prevalence of the C insertion among Jordanians.</td>
</tr>
<tr>
<td>31</td>
<td>The prevalence of the A insertion among Jordanians</td>
</tr>
<tr>
<td>32</td>
<td>The standard curve for BSA.</td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Patient distribution among different groups of ages and leukemia type</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>AML subtypes among patients</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Allele frequency summary for reported SNPs.</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>Genotype frequency summary for the reported SNPs</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>Allele frequency summary for newly discovered SNPs</td>
<td>46</td>
</tr>
<tr>
<td>6</td>
<td>Genotype frequency summary for the newly discovered SNPs</td>
<td>48</td>
</tr>
<tr>
<td>7a</td>
<td>DHFR activity values for the leukemia patients.</td>
<td>57</td>
</tr>
<tr>
<td>7b</td>
<td>DHFR activity values for the control patients.</td>
<td>57</td>
</tr>
</tbody>
</table>