Design and Simulation of Grid-Connected Photovoltaic System
Feed Induction Motor Driving Water Pump

A thesis Submitted to the Department Of Electrical Power Engineering In
partial fulfillment of the requirements for the degree of Master of Science

By
Fuad Abu Khadra

Advisor
Dr. Irahim Altawil

March, 2013
Design and Simulation of Grid-Connected Photovoltaic System

Feed Induction Motor Driving Water Pump

by

Fuad Yousef Abu Khadra

B.Sc. Electrical Power Engineering, Al-Balqa’ Applied University, 2005

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of M.Sc. in Electrical Power Engineering, Yarmouk University, Irbid, Jordan.

Approved by:

Dr. Ibrahim Altawil .. (Chairman)
Associate Professor, Yarmouk University.

Dr. Fathi Amoura .. (Member)
Associate Professor, Yarmouk University.

Dr. Shadi Alboon .. (Member)
Assistant Professor, Yarmouk University.

March, 2013
ACKNOWLEDGMENTS

At the beginning I would like to extend my gratitude to Allah, who gave me the ability to complete this work successfully. I wish to extend my thanks to my supervisor, Dr. Ibrahim Altawil, who gave me valuable advice, excellent guidance and continuous encouragement throughout my research.

Also, I would like to express my special thanks to my father, my wife, family members, and friends for their love, moral support and understanding.

Fuad Abu Khadra
DECLARATION

I am, Fuad Abu Khadra, recognize what plagiarism is and I hereby declare that this thesis, which is submitted to the department of Electrical Power Engineering at Hijjawi Faculty for Engineering Technology, for the partial fulfillment of the requirements for the degree of Master of Science, is my own work. I have not plagiarized from any sources. All references and acknowledgments of sources are given and cited in my thesis. I have used the conventional citation and referencing. Each significant contribution to and quoted in this thesis from the work of other people has been attributed and referenced.

Fuad Abu Khadra
DEDICATION

I dedicate this work to my father, my wife, my friends, my family, and anyone helped me to complete this thesis.
ABSTRACT

PHOTOVOLTAIC (PV) solar energy is one of the green energy sources which can play an important role in reducing greenhouse gas emissions, the storage of fossil fuel and global warming, among various renewable energy sources. This proposed work intends to design, simulate, and investigate a three-phase grid-connected photovoltaic (PV) system to feed induction motor, as a prime mover to a centrifugal water pump. Matlab /Simulink software is used to simulate and to investigate the behavior of the proposed system. The proposed system under study consists of a PV array, boost DC-DC Convertor, three-phase three-level inverter, an induction motor, and a centrifugal water pump. In this proposal, the model of the PV array proposed uses theoretical and empirical equations together with data provided by the manufacturer in order to accurately predict the current-voltage curve. The boost DC-DC Convertor is provided with a maximum power point tracker (MPPT) system which automatically varies the duty cycle in order to generate the required voltage to achieve maximum power. The three-phase three-level voltage source inverter is used to convert DC voltage to AC voltage by using VSC controller to improve the capabilities of grid-connected PV system to rapidly exchange active power with electric grid and to keep unity power factor for electric grid.

Keywords: Photovoltaic (PV), MPPT, DC-DC Boost Converter, VSC Controller, Matlab/Simulink, Centrifugal Water Pump.
TABLE OF CONTENTS

Acknowledgments .. ii
Declaration .. iii
Dedication ... iv
Abstract ... v
List of Contents .. vi
List of Tables ... ix
List of Figures .. x
List of Symbols ... xii

Chapter 1: Introduction

1.1 Importance of Renewable Resources Of Energy ... 1
1.2 Solar Energy Systems .. 2
1.3 Impacts of Grid-Connected PV System On Electrical System Network 3
1.4 Types of Photovoltaic Systems .. 4
 1.4.1 Stand-Alone PV Systems (Off – Grid Systems) ... 5
 1.4.2 Grid-Connected PV Systems (On – Grid Systems) ... 6
1.5 Introduction to the Proposed System ... 7
1.6 Problem Overview .. 8
1.7 Thesis Organization .. 9

Chapter 2: Literature Review and Thesis Objectives

2.1 Literature Review .. 10
2.2 Thesis Objectives .. 19
Chapter 3: Modeling of Various Subsystems

3.1 Modeling of Photovoltaic Array ... 21
 3.1.1 Introduction ... 21
 3.1.2 Modeling of Photovoltaic Cell ... 24
 3.1.3 Photovoltaic Cell Characteristics ... 26
 3.1.4 Modeling of Photovoltaic Array... 28
 3.1.5 Effect of Solar Radiation and Temperature .. 30
3.2 Modeling of the Boost DC-DC Converter .. 33
3.3 MPPT Control Algorithm .. 34
3.4 Modeling of the Voltage Source Inverter .. 36
3.5 Voltage Source Convertor (VSC) Controller .. 37
3.6 The Induction Motor .. 39
3.7 Centrifugal Pump ... 42

Chapter 4: Simulation Results and Discussions

4.1 System Description ... 50
4.2 Parameters of Proposed System Components .. 52
 4.2.1 PV Array System .. 52
 4.2.2 DC-DC Boost Converter ... 52
 4.2.3 Three Phase Three Level Voltage Source Inverter 53
 4.2.4 100 KVA 0.415/33 KV Set Up Transformer 53
 4.2.5 Induction Motor .. 54
 4.2.6 Centrifugal Pump .. 54
4.3 Simulation and Results .. 55
 4.3.1 Simulation Results for PV Array and DC-DC Converter 55
4.3.2 Simulation Results for Three Level Voltage Source Inverter VSI 58
4.3.3 Simulation Results for 33kv Electrical Grid 59
4.3.4 Simulation Results for Load .. 61

Chapter 5 : Conclusion And Future Work

5.1 Conclusion ... 64
5.2 Future Work ... 66

References .. 68
LIST OF TABLES

Table 1. SUNPOWER SPR-305-Wht Photovoltaic Module Specifications
Table 2. The Pump Data Used in the Simulink Model
Table 3. Performance Data for the Pump
Table 4. DC-DC Boost Converter Specifications
Table 5. Transformer Data
Table 6. Induction Motor Data
LIST OF FIGURES

Figure 1: PV Arrays.

Figure 2: Types of Photovoltaic Systems.

Figure 3: The Basic Configuration of a Grid-Connected PV System.

Figure 4: The Basic Configuration of the Proposed System.

Figure 5: Average Daily Horizontal Solar Radiation Incident on One Square Meter Area.

Figure 6: P-N Semiconductor Material.

Figure 7: P-N Junction Depletion Region.

Figure 8: Typical Thin-Film Amorphous Silicon Construction.

Figure 9: Equivalent Circuit of Solar Cell.

Figure 10: Characteristic I-V Curve & P-V Curve of a Photovoltaic Cell.

Figure 11: Photovoltaic Cell, Module, Panel and Array.

Figure 12: Equivalent Circuit of solar module.

Figure 13: The Model of 100 KWp PV Array in Matlab / Simulink.

Figure 14: Schematic of the Boost DC-DC Converter as a Part of the Grid-Connected PV System.

Figure 15: P-V Curve for IC Method Algorithm.

Figure 16: Flowchart for IC Algorithm.

Figure 17: Three Phase Three Level Voltage Source Inverter.

Figure 18: Block Diagram of PI Voltage Regulator.

Figure 19: Block Diagram of PI Current Regulator.

Figure 20: Schematic Diagram of the PV System and Its Control.

Figure 21: IEEE – Recommended Equivalent Circuit for Induction Machine.

Figure 22: Total Dynamic Head as a Function Flow Rate for Different Speeds.

Figure 23: Input Power as a Function of the Flow Rate for Different Motor Speeds.

Figure 24: Pumping System Arrangement.

Figure 25: Simulink Diagram of Pumping System Performance.

Figure 26: The Power Flow to the Pump.

Figure 27: Performance Data for the Pump as Function of the Flow Rate.

Figure 28: Simulation Diagram of the Proposed System.
Figure 29: Simulink Diagram of Sub Model of Pump Load.

Figure 30: Input Signal for PV Array – Solar Radiation (W/m^2).

Figure 31: PV Array Output Power.

Figure 32: PV Array Output Voltages (V).

Figure 33: Duty Cycle for DC-DC Converter.

Figure 34: Output Voltage of DC-DC Converter or Input Voltage of VSI.

Figure 35: Output Voltage of VSI.

Figure 36: Active Power of Grid (KW).

Figure 37: Reactive Power Of Grid (Kvar).

Figure 38: Grid Current (A).

Figure 39: Grid Voltage (V).

Figure 40: Active Power Absorbed By Load.

Figure 41: Reactive Power Absorbed By the Load.

Figure 42: Load Current.

Figure 43: Line To Line Voltage Current of Load.

Figure 44: Electromagnetic Torque of Induction Motor.

Figure 45: Rotor Speed of Induction Motor.