ON ALMOST WN-INJECTIVE RINGS

RAIDA D.M. (1) AND AKRAM S.M. (2)

ABSTRACT: Let R be a ring. Let M_R be a module with $S = \text{End}(M_R)$. The module M is called almost W-nil-injective (briefly right AWN-injective) if, for any $0 \neq a \in N(R)$, there exists $n \geq 1$ and an S-submodule X_a of M such that $a^n \neq 0$ and $l_M(r_R(a^n)) = M^{a^n} \oplus X_a$, as left S-modules. If R is almost W-nil-injective, then we call R is right almost W-nil-injective ring. In this paper, we give some characterization and properties of almost W-nil-injective rings. In particular, Conditions under which right almost W-nil-injective rings are n-regular rings and n-weakly regular rings are given. Also we study rings whose simple singular right R-module are almost W-nil-injective. It is proved that if R is a NCI ring, whose every simple singular R-module is almost W-nil-injective, Then R is reduced.

1. INTRODUCTION

Throughout the paper R is an associative ring with identity, and is a right R-module with $S = \text{End}(M_R)$. For $a \in R$, $r(a), l(a)$ denote the right annihilator and left annihilator of a, respectively. We write $J(R), Z(R), Y(R)$, for the Jacobson radical and the left (right) singular ideal of R, respectively. $X \leq M$ denote that X is a submodule of M.

Following [9] a ring R is called a right (left) NPP if for aR is projective for all $a \in N(R)$ (the set of nilpotent elements). Clearly, right (left) PP ring (that is if every principal right ideal of R is projective as right R-module) is right (left)NPP, but the converse is not true by [9]. The ring R is said to be reduced if R has no non zero nilpotent
element. The ring R is called right (left) SXM [10], if for each $0 \neq a \in R$, $r(a) = r(a^n)$ [$l(a) = l(a^n)$] for all positive integer n satisfying $a^n \neq 0$. For example, reduced rings are right (left) SXM ring. R is said to be Von Neumann regular (or just regular), $a \in aRa$ for every $a \in R$ [15], a ring R is called n-regular [9] if $a \in aRa$ for all $a \in N(R)$. Clearly, Von Neumann regular ring are n-regular, but the converse is not true. A ring R is called right (left) n-weakly regular if $a \in aRaR$ ($a \in RaRa$), for all $a \in N(R)$ [4]. Call a ring R right MC2 if for right minimal element $k \in R$, kR is a summand in R_k, whenever kR is projective as right R-module[8]. A ring R is called weakly reversible if $ab = 0$ implies that $Rbra$ is a nil left ideal of R for all $a, b, r \in R$ [14]. Generalizations of injectivity have been discussed in many papers see [5] ,[6] . A right R-module M is called principal injective (or P-injective), if every R-homomorphism from a principal right ideal of R to M can be extended to an R-homomorphism from R to M. Equivalently, $l_M r_k(a) = Ma$ for all $a \in R$ [2]. In [5], Nicholson and Yousif studied the structure of principally injective rings and give some applications. They also continued to study rings with some other kind of injectivity, namely, GP-injective rings [6] and [10]. A ring R is called GP-injective if for any $a \in R$ there exists a positive integer n with $a^n \neq 0$ and $lr(a^n) = Ra^n$. Right GP-injective rings are called right YJ-injective rings by several authors. In [18], Zhao introduced an almost P-injective module. Let M_R be a right R-module with $S = \text{End}(M_R)$. The module M is called AP-injective, if for any $a \in R$, there exists a left S-submodule X_a of M_R such that $l_M r_k(a) = Ma \oplus X_a$.

AP-injectivity has been generally studied (see [6]). In [9], Wei and Jianhua first introduced and characterized a right nil-injective ring, and give many properties. A ring R is said to be reversible if $ab = 0$ implies that $ba = 0$ for all $a, b \in R$. A ring R is called right nil-injective, if $a \in N(R)$, $lr(a) = Ra$. In [19], Zhao and Du introduced an almost nil-injective module. Let M_R be a module with $S = \text{End}(M_R)$. The module M is called right
almost nil-injective if for any \(k \in N(R) \), there exists an \(S \)-submodule \(X_k \) of \(M \) such that \(l_x r'_k (k) = M_k \otimes X_k \) as left \(S \)-module. If \(R \) is almost nil-injective then we call \(R \) a right almost nil-injective ring.

2. Characterizations of Almost \(W_n \)-Injective

In this section we introduced the notion of a right GNNP and almost \(W_n \)-injective with some of their basic properties; we also give necessary and sufficient conditions for almost \(W_n \)-injective to be \(n \)-regular.

Following [9] a right \(R \)-module \(M \) is called \(W_n \)-injective, if for any \(0 \neq a \in N(R) \), there exists a positive integer \(n \) such that \(a^n \neq 0 \) and any right \(R \)-homomorphism \(f : a^n R \rightarrow M \) can be extends to \(R \rightarrow M \). Equivalently, if for any \(0 \neq a \in N(R) \) there exists a positive integer \(n \) such that \(a^n \neq 0 \) and \(Ra^n = lr(a^n) \).

Clearly right nil-injective module are all \(W_n \)-injective module.

Remark [6]:

We fix the following notation. If \(N \) is a submodule of \(M \), we write \(N/M \) to indicate that \(N \) is a direct summand of \(M \). For an \((R,R) \)-bimodule \(M \), we let \(R \alpha M \) be the trivial extension of \(R \) and \(M \), i.e., \(R \alpha M = R \oplus M \) as an abelian group, with the following multiplication:

\[
(r,x) (s,y) = (rs, ry + xs)
\]

Example 6:

A non commutative right almost nil-injective ring which is not a right \(W_n \)-injective.

Let \(C \) be a noncommutative division subring of a division ring \(D \) such that the \(C \)-vector space \(cD \) has dimension \(>1 \). Let \(R = C \alpha D \) be the trivial extension of \(C \) and the \(C \)-module \(D \). Then \(R \) is not commutative. Let \(0 \neq a = (c,d) \in N(R) \). If \(c \neq 0 \) then \(a \) is invertible in \(R \) and so we can let \(X_a = (0) \). If \(c = 0 \), then \(lr(a) = (0) \alpha D \) and \(Ra = (0) \alpha Cd \). Write \(D = Cd \oplus D_1 \) as a left \(C \)-vector space and let \(X_a = (0) \alpha D_1 \). Then
\(lr(a) = Ra \oplus X_a \). Therefore, \(R \) is right almost nil-injective. Note that \(a^2 = 0 \) and \(lr(a) \neq Ra \). Thus \(R \) is not right \(W \) nil-injective.

Lemma 2.1 [11]:

The following conditions are equivalent for a ring \(R \):

1. \(R \) is \(n \)-regular.
2. Every right \(R \)-module is \(W \)nil-injective.
3. Every cyclic right \(R \)-module is \(W \)nil-injective.
4. \(R \) is right \(W \)nil-injective and NPP ring.

Lemma 2.2 [18]:

Suppose \(M \) is a right \(R \)-module with \(S = \text{End}(M_R) \). If \(l_M r_R(a) = Ma \oplus X_a \), where \(X_a \) is a left \(S \)-submodule of \(M_R \). Set \(f : aR \to M \) is a right \(R \)-homomorphism, then \(f(a) = ma + x \) with \(m \in M \), \(x \in X_a \).

Now we give the following definition.

Definition 2.3:

A ring \(R \) is said to be right (left) GNPP if \((Ra)^n \) is projective for all \(a \in N(R) \) and for some positive integer \(n \), \(a^n \neq 0 \).

Clearly every \(n \)-regular rings, reduced rings and NPP are right GNPP rings.

Lemma 2.4 [9]:

If \(R \) is a right NPP ring, then \(Y(R) = 0 \).

As a parallel result to Lemma (2.4), the following result was obtained:

Proposition 2.5:

Let \(R \) be a right GNPP ring. Then \(Y(R) = 0 \).
Let $0 \neq a \in Y(R)$, with $a^2 = 0$. Then $a \in N(R)$. Since R is a right GNPP ring, then there exists a positive integer n such that $a^n \neq 0$, $a^n R$ is projective. But $a^2 = 0$, so $n = 1$ and aR is projective. Thus $r(a)$ is a direct summand of R as a right R-module. But $a \in Y(R)$, $r(a)$ must be essential in R, which is a contradiction. Hence $Y(R) = 0$.

According to [16], a ring R is right GQ-injective if for any right ideal I isomorphic to a complement right ideal of R, every right R-homomorphism of I into R extends to an endomorphism of $_RR$.

In [16], shows that if R is right (left) GQ-injective, then $J(R) = Y(R)$ ($J = Z$), R/J is regular.

Every regular ring is right (left) GQ-injective. Clearly, R is regular if and only if R is right (left) GQ-injective right non singular [12].

Corollary 2.6:

If R is a right GNPP-ring, then R is regular if and only if R is right GQ-injective.

Proof:

Since R is right GQ-injective then $Y(R) = J(R)$ and R/J is regular ring. By Proposition (2.5) $0 = Y(R) = J(R)$, So R is regular ring.

Conversely: It is clear.

Call a ring is right NC2 if aR projective implies $aR = eR$, $e = e^2 \in R$ for all $a \in N(R)$ [11]. Every n-regular rings is NPP and NC2 rings [10].

Proposition 2.7:

If R is a ring with $l(a^n) \subseteq l(a)$, then R is right NC2 and GNPP if and only if R is n-regular.

Proof:

Let $a \in N(R)$. Since R is right GNPP, then $a^n R$ is projective for some positive integer n and $a^n \neq 0$. Since R is right NC2 ring, $a^n R = eR$.
\[e^2 = e \in R \] Thus \(a^n = ea^n \) implies that \(a = ea \ (l(a^n) \subseteq l(a)) \). So \(e = ab \) for some \(b \in R \). Hence \(a = ea = aba \in aRa \). Thus \(R \) is \(n \)-regular.

Conversely:

Let \(R \) is \(n \)-regular ring ,implies that \(R \) is NPP ring. So is GNPP and NC2 ring.

In [6], Stanley and Yiqiang introduced an almost generalized principally injective (AGP-injective) module. Let \(M \) be a right \(R \)-module with \(S = \text{End}(M_R) \). The module \(M \) is called AGP-injective if , for any \(0 \neq a \in R \), there exists a positive integer \(n \) and S-submodule \(X_a \) of \(M \) such that \(a^n \neq 0 \) and \(l_M r_R(a^n) = M a^n \oplus X_a \) as a left \(S \)-modules. Also studied right AGP-injective rings and give some characterization and properties which generalization results of [19].

Now, we consider rings which are more general than WN-injective rings, an idea parallel to the notion of AGP-injective rings.

Definition 2.8:

Let \(M_R \) be a module with \(S = \text{End}(M_R) \). The module \(M \) is called almost WN-nil-injective (briefly right AWN-nil-injective) if , for any \(0 \neq a \in N(R) \), there exists \(n \geq 1 \) and an S-submodule \(X_a \) of \(M \) such that \(a^n \neq 0 \) and \(l_M r_R(a^n) = M a^n \oplus X_a \) as left \(S \)-modules.

If \(R_R \) is almost \(WN \)-injective, then we call \(R \) is right almost \(WN \)-injective ring.

Remark:

\[
\{\text{right YJ-injective rings}\} \subset \{\text{right nil-injective rings}\} \subset \{\text{right WN-injective rings}\} \\
\subset \{\text{right AWN-injective rings}\} \\
\{\text{right AN-injective rings}\} \subset \{\text{right AWN-injective rings}\}
\]

Examples [19]:

The ring \(\mathbb{Z} \) of integers is AWN-injective which is not AGP-injective.
Let Z_2 be a field, and $R = \begin{bmatrix} Z_2 & Z_2 \\ 0 & Z_2 \end{bmatrix}$, $N(R) = \begin{bmatrix} 0 & Z_2 \\ 0 & 0 \end{bmatrix}$. Let $0 \neq u \in Z_2$, then

\[
\begin{bmatrix} 0 & u \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & Z_2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix},
\]

and so R is not right WN-injective but R is AWN-injective ($lr(a) = Ra \oplus X_a$).

Let $R = \begin{bmatrix} 0 & Z_2 \\ 0 & Z_2 \end{bmatrix}$, where Z_2 is a field. Then $N(R) = \begin{bmatrix} 0 & Z_2 \\ 0 & 0 \end{bmatrix}$. Let $y = \begin{bmatrix} 0 & x \\ 0 & 0 \end{bmatrix} \in N(R)$, then $Ry = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, $lr(y) = R$. Therefore $lr(y) \neq Ry$ and so R is not WN-injective. But $lr(y) = Ry \oplus R$. So R is right AWN-injective.

Lemma 2.9 [3]:

The following conditions are equivalent:

1- R is n-regular.

2- $N_i(R) = \{ 0 \neq x \in R : x^2 = 0 \}$ is regular.

3- For any $a \in N(R)$, there exists a positive integer n such that $a^n \neq 0$ and a^nR is generated by idempotent.

It is clear that any n-regular rings is AWN-injective but the converse is not true.

The following Theorem gives a partial converse.

Theorem 2.10:

Let R be a right SXM ring. Then the following conditions are equivalent:

1- R is n-regular.

2- R is a right AWN-injective right NPP-ring.

Proof:

(1) \rightarrow (2) is clear by [Lemma 2.1]
(2) \rightarrow (1). Let $0 \neq a \in N(R)$. Since R is a right AWN-injective, then there exists $n \geq 1$ such that $a^n \neq 0$ and $lr(a^n) = Ra^n \oplus X_a$. Since R is right NPP ring and $a^n \in N(R)$, $r(a^n) = (1-e)R$, $e^2 = e \in R$. Therefore $Re = lr(a^n) = Ra^n \oplus X_a$, $e = ra^n + x$, where $r \in R$, $x \in X_a$. So $a^n = a^n e = a^n ra^n + a^n x$, $(1-a^n r)a^n = a^n x \in Ra^n \cap X_a = 0$ and $a^n = a^n ra^n$ this implies that $(1-ba^n) \in r(a^n) = r(a)$ [R is SXM], yielding $a = a ra^n$. Take $c = ra^{n-1} \in R$, hence $a = ac a$. Therefore R is n-regular.

Proposition 2.11:

Let R be a ring whose every simple right R-module is AWN-injective then:

1. $J(R) \cap Soc(R) = 0$
2. $J(R)$ is a reduced ideal of R.

Proof:

If $J(R) \cap Soc(R) \neq 0$, then there exists a minimal right ideal kR of R with $kR \subseteq J(R)$. If kR is a direct summand, then $kR = eR$ for some $0 \neq e^2 = e \in R$ and we get $e \in J(R)$, which is a contradiction. So that $(kR)^2 = 0$. Since $r(k)$ is maximal right ideal of R, then $R/r(k)$ is AWN-injective. Let $f : kR \rightarrow R/r(k)$ be defined by $f(kr) = r + r(k)$. Then f is a well defined R-homomorphism. Since $R/r(k)$ is AWN-injective $l_{R/r(k)}(r(k)) = r(k)k \oplus X_k$ where X_k is a left S-submodule of M. Therefore $1 + r(k) = f(k) = bk + r(k) + X$ (Lemma 2.2). Thus $1-bk + r(k) = x \in r(k)k \cap X_k = 0$, $1-bk \in r(k)$. Since $k \in J(R)$, then $bk \in J(R) \subseteq r(k)$, which implies $1 \in r(k)$, which is also a contradiction. Therefore $J(R) \cap Soc(R) = 0$.

Let \(0 \neq a \in J(R) \) such that \(a^2 = 0 \). Since \(a \neq 0 \), then there exists a maximal right ideal \(M \) of \(R \) containing \(r(a) \). Thus \(R/M \) is AWN-injective, and
\[
l_{R/M} r(a) = (R/M)a \oplus X_a \leq R/M.
\]

Let \(f : aR \to R/M \) be defined by \(f(ar) = r + M \). Then \(f \) is a well defined \(R \)-homomorphism. So there exists \(r \in R, x \in X_a \) such that \(1 + M = ra + M + x \), \(1 - ra + M = x \in R/M \cap X_a = 0 \). Hence \(1 - ra \in M \) and so \(1 \in M \), which is a contradiction. Hence \(J(R) \) is reduced.

Lemma 2.12 [1]:

If \(Y(R) = 0 \), then \(SR \) is a maximal right quotient ring of \(R \). Thus the maximal right quotient ring of any right nonsingular ring is regular.

Now, we have the following theorem.

Theorem 2.13:

If \(R \) is a right GNPP right AWN-injective ring, then the center of \(R \) \((C(R))\) is \(n \)-regular.

Proof:

Since \(Y(R) = 0 \) [Proposition 2.5], then there exists a right maximal quotient ring \(S \) of \(R \) such that it is regular Lemma (2.12), then \(C(S) \) is regular [The center of a regular ring is regular]. For any \(0 \neq a \in N(C(R)) \subseteq N(C(S)) \), there exists \(s \in C(S) \) such that \(a = asa = a^2s = sa^2 \). Thus \(r(a^n) = r(a), l(a) = l(a^n) \) for any positive integer \(n \). We Claim that \(a \) is \(n \)-regular in \(N(C(R)) \). Note that \(a^2 \neq 0 \), so there exists a positive integer \(m \) with \(a^{2m} \neq 0 \) such that \(lr(a^{2m}) = Ra^{2m} \oplus X_{a^{2m}} \) for some left ideal \(X_{a^{2m}} \) of \(R \) since \(R \) is right AWN-injective. Thus \(lr(a^{2m-1}) = lr(a^{2m}) = Ra^{2m} \oplus X_{a^{2m}} \) and So \(a^{2m-1} = da^{2m} + x \) for some \(d \in R \) and \(x \in X_{a^{2m}} \). Then \(a^{2m} = ada^{2m} + ax \) and \((1-ad)a^{2m} = ax \in Ra^{2m} \cap X_{a^{2m}} = 0 \).
Therefore \((1-\text{ad})a^{2m} = 0 \) and \((1-\text{ad}) \in l(a^{2m}) = l(a) \), and So \(a = \text{ada} = a^2 d \).

Let \(u = ad^2 \) then \(a = a^2 d = a(a^2 d)d = a^2 ad^2 = a^2 u \). For any \(x \in R \), \(a^2(xu-ux) = 0 \) So \((xu-ux) \in r(a^2) = r(a) \), \(0 = a(xu-ux) = a(xad^2-adx^2) = a^2(xd^2-d^2x) \), \((xd^2-d^2x) \in r(a^2) = r(a) \).

Thus \(xu-ux = xad^2-adx^2 = a(xd^2-d^2x) = 0 \). So \(xu = ux \), \(u \in C(R) \) and \(a = auu \)

Therefore \(C(R) \) is n-regular.

Lemma 2.14 [7]:

If \(R \) is a semiprime ring , then \(r(a^n) = r(a) \) for any \(a \in C(R) \) and a positive integer \(n \).

Proposition 2.15:

If \(R \) is a semiprime right AWN-injective ring , then the center \(C(R) \) of \(R \) is n-regular.

Proof:

For any \(0 \neq a \in N(C(R)) \), \(Ra \cap l(a) = 0 \). Since \(R \) is semiprime. Therefore, \(l(a^m) = l(c) = r(c) = r(a^n) \) for any a positive integer \(n \) Lemma (2.14). Note that \(a^2 = 0 \) because \(Ra \cap l(a) = 0 \). As in the proof of Theorem [2.13], \(C(R) \) is n-regular.

Proposition 2.16:

Let \(R \) be a ring , if for any element \(a \in N(R) \) , there exists a positive integer \(n \) such that \(r(a^n) \subseteq r(a) \) and \(a^n \neq 0 \) if \(R/r(a^n) \) is AWN-injective, then \(R \) is n-regular ring.

Proof:

Let \(a \) be any element in \(N(R) \) and let \(f : a^n R \to R/r(a^n) \) be defined by \(f(a^n s) = s + r(a^n) \) for all \(s \in R \) and positive integer \(n \) and \(a^n \neq 0 \). Then \(f \) is a well defined \(R \)-homomorphism. Since \(R/r(a^n) \) is AWN-injective, \(l_{R/r(a^n)} r_R(a^n) = (R/r(a^n)) a^n \oplus X_{a^n} \).
where \(X_{a^r} \) is a left \(S \)-submodule of \(R/r(a^n) \), \((X_{a^r} \subseteq R) \). Then there exists \(b \in R \) and \(x \in X_{a^r} \) such that \(1 + r(a^n) = f(a^n) = ba^n + r(a^n) + x \) (Lemma 2.2).

Thus \(1 - ba^n + r(a^n) = x \in R/r(a^n) \cap X_{a^r} = 0 \), \(1 - ba^n \in r(a^n) \subseteq r(a) \) implies that \(a = aba^n \). Take \(c = ba^{n-1} \), Hence \(a = aca \). Therefore \(R \) is n-regular ring.

Theorem 2.17:

Let \(R \) be a ring with \(a^nR = aR \) for every \(a \in R \) and a positive integer \(n \), \(a^n \neq 0 \). If every simple right \(R \)-module is AWN-injective, then \(R \) is right n-weakly regular ring.

Proof:

We will show that \(RaR + r(a) = R \) for any \(a \in N(R) \). If \(RaR + r(a) \neq R \), then there exists a maximal right ideal \(M \) of \(R \) containing \(RaR + r(a) \). Then \(R/M \) is AWN-injective, then \(l_{R/M}r(a^n) = (R/M)a^n \otimes X_{a^r} \), \(X_{a^r} \leq R/M \). Let \(f : a^nR \to R/M \) be defined by \(f(a^n r) = r + M \). Note that \(f \) is well defined. So \(1 + M = f(a^n) = ca^n + M + x \), \(c \in R \), \(x \in X_{a^r} \), \(1 - ca^n + M = x \in R/M \cap X = 0 \).

So \(1 - ca^n \in M \). Since \(ca^n \in Ra^nR = RaR \subseteq M \), \(1 \in M \), Which is a contradiction. Therefore \(RaR + r(a) = R \) for any \(a \in N(R) \), then \(R \) is a right n-weakly regular.

Following [13], a ring \(R \) is called right N duo if \(aR \) is an ideal of \(R \) for all \(a \in N(R) \).

Every reduced rings is N duo.

Now, we give the definition.

Definition 2.18:

An element \(x \in N(R) \) is called right (left) generalized n-regular if there exists a positive integer \(n \) such that \(x^n \neq 0 \) and \(x^n = x^n yx \) (\(x^n = xyx^n \)) for some \(y \in R \). A ring \(R \) is called right (left) generalized n-regular if every element in \(N(R) \) is right (left) generalized n-regular.
Theorem 2.19:

Let R be AWN-injective ring with $lr(a^n) = l(r(a^{n-1}))$ for every $a \in N(R)$ and $a^n \neq 0$. Then R is generalized n-regular.

Proof:

Suppose that $a \in N(R)$. Then there exists a positive integer n such that $a^n \neq 0$ and $lr(a^n) = Ra^n \oplus X$ for some $X \leq R$. Since $lr(a^n) = l(r(a^{n-1}))$, then $lr(a^{n-1}) = Ra^n \oplus X$ and $a^{n-1} = da^n + x$ for some $d \in R$, $x \in X$. So $a^n = ada^n + ax$, $ax = a^n - ada^n \in Ra^n \cap X = 0$, $a^n = ada^n$.

This proves that R is generalized n-regular.

Definition 2.20:

A ring R is called right Quasi-Nduo ring if every right maximal right ideal is right Nduo.

Theorem 2.21:

Let R be a right quasi N duo and every simple right R-module is AWN-injective. Then every element of $N(R)$ is strongly Π-regular.

Proof:

For any $0 \neq a \in N(R)$, we will show that there exists a positive integer n such that $a^nR + r(a^n) = R$. Suppose not, then there exists a maximal right ideal M of R containing $a^nR + r(a^n)$. Since R/M is AWN-injective, $l_{R/M}(r_R(a^n)) = (R/M)a^n + X_{a^n}$, $X_{a^n} \leq R/M$ and $a^n \neq 0$. Let $f : a^nR \to R/M$ be defined by $f(a^n) = r + M$. Since $a^nR + r(a^n) \subseteq M$, f is well defined R-homomorphism. Thus there exists $c \in R$, $x \in X_{a^n}$ such that $1 + M = ca^n + M + x$, by Lemma (2.2), then $1 - ca^n + M = x \in (R/M)a^n \cap X_{a^n} = 0$.
ON ALMOST WN-INJECTIVE RINGS

1−ca^n ∈ M and ca^n ∈ M (R is right N duo) and So 1∈ M , which is a contradiction.
Therefore a^nR+r(a^n) = R . In particular a^n x + y = 1 , x ∈ R , y ∈ r(a^n) , So a^n = a^{2n} + x .
Thus a is strongly Π-regular.

3- On Simple Singular AWN-injective Modules

In this section, we study of rings whose Simple singular right R-module are AWN-injective.
Also we give the relation between this rings and reduced rings.

A right MC2 ring R is called strongly right MC2 if R is also weakly reversible ring [12].

Now, the following result is given:

Proposition 3.1:

Let R be a ring whose every simple singular right R-module is AWN-injective. Then
Y(R) ∩ Z(R) = 0.

Proof:

If Y(R) ∩ Z(R) ≠ 0, then there exists 0 ≠ b ∈ Y(R) ∩ Z(R) such that b^2 = 0. We
claim that RbR+r(b) = R. Otherwise there exists a maximal essential right ideal M of R
containing RbR+r(b). So R/M is AWN-injective, and l_{r/M} r_k(b) = (R/M)b ⊕ X_b.

X_b ≤ R/M. Let f : bR → R/M be defined by f(br) = r + M. Note that f is a well
defined R-homomorphism. Then 1 + M = f(b) = cb + M + x , c ∈ R , x ∈ X_b ,
1−cb + M = x ∈ R/M ∩ X_b = 0 , 1−cb ∈ M. Since cb ∈ RbR ⊆ M , 1 ∈ M , which is a
contradiction. Therefore 1 = x + y , x ∈ RbR , y ∈ r(b) , and so b = bx. Since
RbR ⊆ Z(R) , x ∈ Z(R). Thus l(1−x) = 0 and so b = 0, which is a contradiction. This
show that Y(R) ∩ Z(R) = 0.
Theorem 3.2:

R is a reduced ring if and only if R is a strongly right MC2 ring whose simple singular right R-modules are AWN-injective.

Proof:

The necessity is evident.

Conversely: Let $a^2 = 0$. Suppose that $a \neq 0$. Then there exists a maximal right ideal M of R containing $r(a)$. First observe that M is an essential right ideal of R. If not, then $M = r(e)$ for some $e \in ME_e$, (the set of all minimal idempotents elements of R). Since R is strongly right MC2 ring, R is a strongly min-right semi central ring, so we obtain e is central in R. Using $a \in r(a)$, we get $ae = ea = 0$. Hence $e \in r(a) \subseteq M = r(e)$. Which is a contradiction. Therefore M must be an essential right ideal of R. Thus R/M is AWN-injective, and there exists a positive integer $n \geq 1$ such that $a^n \neq 0$ and $1_{R/M}r_r(a^n) = (R/M)a^n \oplus X_{a^n}$, $X_{a^n} \leq R/M$. Since $a^2 = 0$, then $n = 1$, and therefore $1_{R/M}r_r(a) = (R/M)a \oplus X_a$. Let $f : aR \rightarrow R/M$ defined by $f(ar) = r + M$. Note that f is a well-defined R-homomorphism. Since R/M is AWN-injective, there exists $c \in R$ such that $1 + M = f(a) = ca + M + x, x \in X_a$ (Lemma 2.2). So $1 - ca + M = x \in R/M \cap X_a = 0$. Since $a^2 = 0$, $aca \subseteq N^+(R)$ (the sum of all nil ideal) $\subseteq N(R)$. Hence $ca \in N(R)$ and so $1 - ca \in U(R)$ (the set of all invertible elements), which implies that $M = R$, which is a contradiction. Therefore $a = 0$, and R is reduced.

Theorem 3.3:

Let R be a NCI ring. If R satisfies one of the following conditions, then R is a reduced ring:

1- R is a right n-weakly regular.
2- Every simple right R-modules is AWN-injective.

3- R is right MC2 whose every simple singular right module is AWN-injective.

Proof:

If $N(R) \neq 0$, there exists $0 \neq I$ of R contained in $N(R)$. Clearly, there exists $0 \neq b \in I$ such that $b^2 = 0$ and so there exists a maximal right ideal M of R containing $r(b)$.

If R is right n-weakly regular, then $b = bc$ for some $c \in RbR$. Since $RbR \subseteq I \subseteq N(R)$, there exists a positive integer $n \geq 1$ such that $c^n = 0$. Hence $b = bc = ccb = ccccb = \ldots c^n b = 0$, which is a contradiction.

If R/M is AWN-injective, then $l_{R/M} r(b^n) = (R/M)b^n \varoplus X_{b^n}$, $X_{b^n} \leq R/M$. Since $b^2 = 0$, then $l_{R/M} r(b) = (R/M)b \varoplus X_b$. Let $f : bR \rightarrow R/M$ be defined by $f(br) = r + M$.

Note f is a well defined. So $1 + M = f(b) = cb + M + x$, $c \in R$, $x \in X_b$. $1 - cb + M = x \in R/M \cap X_b = 0$. $1 - cb \in M$.

Since $cb \in I \subseteq N(R)$, $1 - cb \in U(R)$, which implies that $M = R$, a contradiction.

If M is not an essential right ideal of R, then $M = r(e)$ for some $e \in ME, (R)$. Clearly $eb = 0$. If $eRb \neq 0$, then $eRbR = eR$. But $eRbR \subseteq I \subseteq N(R)$, which is a contradiction, because $e \notin N(R)$. So $eRb = 0$. Therefore M is essential, then R/M is AWN-injective and $l_{R/M} r(b) = (R/M)b \varoplus X_b$. Hence by the same method as in the proof of (2), a contradiction. Therefore R is reduced.

A ring R is said to be NI if $N(R)$ forms an ideal of R. A ring R is said to be 2-prim if $N(R) = P(R)$, where $P(R)$ is the prime radical of R. Clearly, every 2-prime ring is NI [9].
Theorem 3.4 :

Let R a right MC2 ring whose every Simple singular right R-module is AWN-injective, then the following conditions are equivalent :

1- R is reduced ring .
2- R is 2-prime ring .
3- R is NI ring .

Proof :

$1 \rightarrow 2 \rightarrow 3$ are obviously .

$(3) \rightarrow (1)$ Let $a^2 = 0$. Suppose $a \neq 0$. Then there exists a maximal right ideal M of R containing $r(a)$. If M is not essential in R, then $M = r(e)$, where $e^2 = e \in R$ is a right minimal element. Hence $ea = 0$ because $a \in r(a)$. If $eRa \neq 0$, then $eRaR = eR$. Since R is NI ring, then $N(R)$ is an ideal of R, so $eRaR \subseteq N(R)$ because $a \in N(R)$. Thus $e \in N(R)$, which is a contradiction. This show that $eRa = 0$. Hence $aRe = 0$ because R is right MC2. Thus $e \in r(a) \subseteq r(e)$ which is also a contradiction. This implies that M is essential in R, then R/M is AWN-injective. By hypothesis. So $l_{R/M}r(a) = (R/M)a \oplus X_a$, $X_a \leq R/M$ ($a^2 = 0$, then $n=1$). Let $f : aR \rightarrow R/M$ be defined by $f(ar) = r + M$. Note that f is well defined R-homomorphism. Then $1 + M = f(a) = ca + M + x$, $c \in R$, $x \in X_a$, $1 - ca + M = x \in R/M \cap X_a = 0$, $1 - ca \in M$. Since $ca \in N(R)$, $1 - ca$ is invertible. So $M = R$, which is a contradiction. This show that $a = 0$ and so R is reduced .

Call a ring R right GMC2 for any $a \in R$, any right minimal idempotent $e \in R$, $eRa = 0$ implies $aRe = 0$. Clearly, a right GMC2 ring is right MC2 . [12]
Lemma 3.5 [12]:

Let R be a right GMC2 ring and if $a \in R$ is not a right weakly regular element, then every maximal right ideal M of R containing $RaR + r(a)$ must be essential in R.

Proposition 3.6:

Let R be a right GMC2 ring and if every simple singular right R-module is AWN-injective, then for any $0 \neq a \in N(R)$ there exists a positive integer n such that $a^n \neq 0$ and $RaR + r(a^n) = R$.

Proof:

Assume that $a^n \neq 0$, $a^{n+1} = 0$. If a^n is a right weakly regular element, then we are done. Otherwise, by Lemma (3.5), there exists a maximal essential right ideal containing $Ra^nR + r(a^n)$. Thus R/M is AWN-injective and $l_{R/M}r(a^n) = (R/M)a^n \oplus X_{a^n}$, $X_{a^n} \leq R/M$. Let $f : a^nR \to R/M$ be defined by $f(a^n r) = r + M$. Note that f is a well-defined R-homomorphism. Then $1 + M = f(a^n) = da^n + M + x$, $d \in R$, $x \in X_{a^n}$, $1 - da^n + M = x \in R/M \cap X_{a^n} = 0$, $1 - da^n \in M$. Since $da^n \in Ra^nR \subseteq M$, $1 \in M$, which is a contradiction. Hence $R = Ra^nR + r(a^n) = RaR + r(a^n)$.

From Theorem (3.4) and proposition (3.6) we get:

Corollary 3.7:

Let R be a right GMC2, NI ring, whose every simple singular right R-module is AWN-injective. Then R is weakly regular ring.

Theorem 3.8:

If R is strongly right MC2, then the following statements are equivalent:

Every right R-module is WN-injective.
Every right R-module is AWN-injective.
Every simple right R-module is AWN-injective.
Every simple singular right R-module is AWN-injective.
\(R \) is reduced.
\(R \) is n-regular .

Proof :

Obviously (1) \(\Rightarrow \) (2) \(\Rightarrow \) (3) \(\Rightarrow \) (4), (5) \(\Rightarrow \) (6). And by [Theorem 3.2], (4) implies (5).

(6) \(\Rightarrow \) (1) Lemma (2.1).

REFERENCES

(1) Department of Mathematics, College of Computers Science and Mathematics, University of Mousl, Iraq.
E-mail address: raida.1963@yahoo.com

(2) Department of Mathematics, College of Computers Science and Mathematics, University of Tikrit, Iraq.