A Parallelized Implementation of MPEG-4 Global Motion Estimation on Multicore Processors using OpenMP

By

Mahmoud Y. Al-Sarayreh

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Computer Engineering, Yarmouk University, Irbid, Jordan.

Signature of Author:

Committee Member Signature and Date

Dr. Hussein Al-Zoubi (Chairman)

Dr. Mohammad Halloush (Member)

Dr. Shadi Alboon (External Examiner)

July 2013

Video compression requires high computational power. In real time multimedia applications, computations must be performed as fast as possible to meet the strict real-time requirements. Most modern video compression techniques use local and global motion estimation and compensation. A parallel computation model can be applied to enhance the performance and meet real-time requirements of video compression.

In this thesis, we propose a parallel approach to parallelize global motion estimation of the open source code ISO/IEC 14496 MPEG-4 standards. The proposed parallel implementation was tested on multicore architectures, where we used OpenMP to build a parallel model. The parallelization of global motion estimation on multicore processors uses multithreads over shared memory. The proposed parallel implementation divides a frame into a number of independent blocks, each block is assigned to OpenMP section and each section is automatically assigned to a thread to perform its computations. We have implemented in three variations : the frame is divided into two blocks on a dual-core system, the frame is divided into four blocks on an enhanced dual-core system, and the frame is divided into six blocks on a quad-core system.
The experimental results of the proposed parallel implementation show an improvement in performance of the global motion estimation of MPEG-4 computations. The maximum speedup was achieved on the quad-core system, with a speedup of 2.2 for CIF, and 1.97 for QCIF.

Keywords: Global Motion Estimation (GME), MPEG-4, parallelization, multicore systems, speedup, OpenMP Model.