PART I. REACTIONS OF THE ORGANOIRON SULFANES, \(\mu-S_x \)(Fe\(\text{Cp}(\text{CO})_2 \))_2 (x=3,4) INCLUDING A NOVEL METHOD FOR THE SYNTHESIS OF NEW ORGANOIRON THIOCARBOXYLATEDS, Fe\(\text{Cp}(\text{CO})_2 \)SCOR.

PART II. REACTIONS OF METAL CARBONYLS M(CO)\(_6\) (M=Cr, Mo, W) WITH LITHIUM TRIETHYL BOROHYDRIDE, Li\((\text{C}_2\text{H}_5)\)_3BH.

BY
JAMILAH S. ABU NASSER

BACHELOR DEGREE IN SCIENCE (CHEMISTRY)
1980

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE.

AT
YARMOUK UNIVERSITY

Dr. MAHMOUD A. EL-HINNAWI

A DIVISOR AND CHAIRMAN OF SUPERVISORY COMMITTEE.

Dr. AMIN T. HAJ-HUSSEIN

MEMBER

Dr. IBRAHIM JIBRIL

ABSTRACT

The research described in this thesis is divided into two parts. In part I the reactivities of the organoiron sulfanes, \((\mu-S_X)_2[Fe\,Cp(CO)]_2\) \((X=3,4)\) were studied by carrying out the reaction of the trisulfanes \((X=3)\) with \(Fe_2(CO)_9\), the photolysis of the tetrasulfane \((X=4)\), and the reaction of the tri- and tetrasulfanes with acid chlorides, \(R\text{COCl}\), as electrophiles. The reaction of trisulfane with \(Fe_2(CO)_9\) gave mainly the stable sulfide cluster, \(Fe_3(CO)_9S_2\). In this reaction \(Fe_2(CO)_9\) abstracted sulfur atoms from the irontrisulfane which contains a reactive bridging "S-S-S" group.

The photolysis of the ironpentasulfane produced green dimeric sulfide complex, \(Fe_2(Cp)_2(CO)(S_2)_2\). This complex, in solution exists in cis-trans isomeric forms. The equilibrium concentration of the two isomers depends on the polarity of the solvent. The relative concentration of cis-isomer increases as the polarity of the solvent increases. It was also found that the green sulfide complex thermally converts into two structurally related brown complexes, \(Fe_2(Cp)_2(S_2)_2\), upon losing the CO ligand.

The reactions of the iron sulfanes \((X=3,4)\) with the acid chlorides, \(R\text{COCl}\), \((R=2-C\text{H}_3C\text{H}_2\text{CH}_2,\,2-C\text{H}_3\text{COOC}\text{H}_2,\,3,5-(NO_2)_2C\text{H}_3)\) at room temperature, produced the new s-bonded monothiocabxylate complexes, \(Fe\,Cp(CO)_2SCOR\), in moderate yield. The
reactivity of the organoiron sulfanes toward acid chlorides as electrophiles was attributed to the reactivity of the sulfur atoms as electron donor in the bridging \(S_x \) (\(x=3,4 \)) group. These reactions provide a novel and convenient route to the new \(S \)-bonded monothiocarboxylate complexes, \(\text{Fe} \:\text{Cp(CO)}_2\text{SCOR} \).

Part II describes the reaction of the metal carbonyls \(\text{M(CO)}_6 \) (\(\text{M} = \text{Cr, Mo, and W} \)) with \(\text{Li(C}_2\text{H}_5)_3\text{BH} \). In this reaction the mononuclear hydride, \(\text{HCr(CO)}_5^- \) and the bridging hydride, \((\mu-\text{H})[\text{Cr(CO)}_5^-]_2 \) were identified in solution. The \((\mu-\text{H})[(\text{M(CO)}_5^-)_2 \) (\(\text{M} = \text{Mo and W} \)) were also identified in solution. No evidence for the formation of the formyl complexes was observed.