TEMPERATURE DEPENDENCE OF DICHROISM IN MAGNETIC FLUIDS

By

Mohammad Abdallah Mohammad Abdallah

B.Sc., Physics, Yarmouk University, 1991

Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science in Physics at Yarmouk University.

Approved.

Dr. Nihad Yusuf...............Nihad Yusuf...............Chairman

Dr. Ibrahim Abu-Aljarayesh...Ibrahim...............Advisor & Member

Dr. Munir Dababneh.........Munir Dababneh..........Member

Dr. Sami Mahmoud.........Sami Mahmoud..........Member

June, 1993
Temperature Dependance of Dichroism in Magnetic Fluids

By

Mohammad Abdallah

Supervised by

Dr. Nihad Yusuf

Dr. Ibrahim Abu-Aljarayesh

Abstract

The temperature dependence of dichroism, ΔA, in Fe$_3$O$_4$ magnetic fluids has been investigated in the temperature range $100 \leq T \leq 320$ K and in magnetic fields up to 3 kOe.

The results show that dichroism for a given concentration and for a given applied field is zero below a certain temperature (below the melting point of the liquid carrier) and then increases with temperature till it reaches a maximum at a temperature T_m. The value of T_m is found to vary with concentration and applied field. For temperature $T > T_m$ the dichroism decreases with temperature in an Arhenius-type behavior.

Analysis of our results shows that the orientation of pre-existing clusters in the field direction and the field-induced chain formation are the main reasons for the large observed dichroism. Moreover, the non-linearity of the inverse dichroism versus temperature suggests the non-adherence of dichroism to the Curie-Weiss law. However, good straight lines are obtained for Log(ΔA) versus $1/T$ for temperature $T > T_m$ and for Log(ΔA) versus $1/(T-T_0)$ for $T < T_m$. The linearity in these plots indicates that dichroism follows a Vogel-Fulcher and an Arhenius type behaviors for $T < T_m$ and $T > T_m$, respectively. Because this behavior is similar to the behavior of the viscosity of magnetic fluids, it is suggested that dichroism is mainly controlled by the viscosity of the fluid.