LASER-INDUCED BREAKDOWN SPECTROSCOPY (LIBS): AN
INNOVATIVE TOOL FOR STUDYING BACTERIA

by

QASSEM I. MOHAIDAT

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2011

MAJOR: PHYSICS

Approved by:

Advisor Date
DEDICATION

I would like to dedicate my dissertation to my wife, my children Amr, Sarah and Muhammad, my mother, my Father, and my brothers and sisters, for their love, patience, and support.
ACKNOWLEDGMENTS

First and foremost I would like to gratefully and sincerely thank my advisor Dr. Steven Rehse for his guidance, understanding, and patience from the very early stage of this research as well as giving me extraordinary experiences throughout the work. I would like also to thank my committee members Dr. Sunil Palchaudhuri, Dr. Jogindra Wadehra, and Dr. Peter Hoffmann for their encouraging words and guidance over the years. Special thanks to Dr. Ratna Naik for her endless support and keeping an eye on me through my graduate study.

I would like to also extend my gratitude to Dr. Hossein Salimnia for helpful conversations concerning bacterial pathogenesis and bacterial strain selection and Dr. Robert Mitchell for providing \textit{E. coli} specimens and bacterial preparation guidance. I would like to take this opportunity to thank Dr. Choong-Min Kang (Wayne State University, Department of Biological Sciences) for the preparation of the \textit{M. smegmatis} samples.

My graduate studies would not have been the same without the social and academic challenges and diversions provided by all my student-colleagues in our department. I am particularly thankful to my friends Caleb Ryder, Eldar Kurtovic, and Emir Kurtovic. My enormous debt of gratitude can hardly be repaid to my wife Khozima Hamasha, who not only proof-read multiple versions of all the chapters of this dissertation, but also provided many stylistic suggestions to help me improve my presentation and clarify my arguments.
TABLE OF CONTENTS

DEDICATION ... ii

ACKNOWLEDGMENTS ... iii

CHAPTER 1 “INTRODUCTION” ... 1

1.1 The Identification of Bacteria in Clinical Samples ... 2

1.2 LIBS Technique Comparison with Other Techniques 6

1.3 Objectives of This Work ... 13

References .. 19

CHAPTER 2 “PRINCIPLES OF LIBS, BACTERIAL PHYSIOLOGY, AND CHEMOMETRIC ANALYSIS” ... 22

2.1 Principles of LIBS ... 22

2.1.1 Energy Source ... 22

2.1.2 Spatial Intensity Distribution .. 24

2.2 Fundamental Ablation Processes .. 25

2.2.1 Ablation and Plasma Creation .. 25

2.2.2 Plasma Breakdown .. 27

2.2.3 Spectral Emission from Plasma ... 31

2.2.4 Temperature and Spectral Lines Intensities .. 33

2.3 Bacteria Physiology ... 36

2.3.1 Cell Wall Structure of the Gram-Negative Bacteria 38

2.3.2 Cell Wall Structure of the Gram-Positive Bacteria 40

2.4 Selection of Bacterial Species for LIBS Study ... 41

2.5 Discriminant Function Analysis (DFA) ... 43
2.5.1 Definition ...43
2.5.2 How Discriminant Analysis Works ...43
2.5.3 The Approach ...43
2.5.4 The Linear Discriminant Model ..44
References ..46

CHAPTER 3 “INSTRUMENTATION AND STANDARD METHODS”50
3.1 Laser System ...50
 3.1.1 Laser Delivery Optics ...51
 3.1.2 Optical Collection ...57
3.2 Bacterial Culture and Growth ...61
 3.2.1 Media Preparation ..61
 3.2.2 Liquid Culture ..62
 3.2.3 Inoculating and Dilution on Solid Culture ..63
 3.2.4 Preparation of Bacterial Targets ...64
3.3 Experimental Parameters ...67
References ..72

CHAPTER 4 “THE EFFECT OF SEQUENTIAL DUAL-GAS TESTING ON LIBS-BASED DISCRIMINATION: APPLICATION TO BRASS SAMPLES AND BACTERIAL STRAINS” ...73
4.1 Introduction ...73
4.2 Experimental ...74
4.3 Results and Discussion ..77
 4.3.1 Brass Samples ...77
4.3.2 Bacterial Samples ...86

4.4 Conclusions ..90

4.5 Summary ...91

References ...93

CHAPTER 5 “THE EFFECT OF MIXED CULTURES AND SAMPLE DILUTION ON BACTERIAL IDENTIFICATION” ...95

5.1 Introduction ...95

5.2 Experiment ...96

5.2.1 LIBS Experiment ...96

5.2.2 Bacterial Sample Preparation ...97

5.2.3 Mixed Samples ..98

5.3 Results and Discussion ...99

5.3.1 Mixing Experiment ..99

5.4 Sample Dilution ..103

5.4.1 Dilution Experiment ..103

5.5 Bacterial Discrimination and Library108

5.6 Conclusions / Summary ..110

References ...112

Chapter 6 “THE EFFECT OF BACTERIAL ENVIRONMENTAL AND METABOLIC STRESSES ON A LIBS-BASED IDENTIFICATION OF E. COLI AND S. VIRIDANS” ...113

6.1 Introduction ...113

6.2 LIBS Instrumentation ...114

6.3 Nutrition Medium Environment: Effect on E. coli Strain Discrimination ...116
6.4 LIBS Identification of Live and Dead Bacteria ... 117
6.5 LIBS Identification of Pathogenic and Non-Pathogenic Bacteria under Nutrient
 Deprivation Conditions .. 123
6.6 Conclusions ... 126
6.7 Summary ... 128
 References ... 129

CHAPTER 7 TOWARD THE IDENTIFICATION OF BACTERIA IN
CLINICAL SAMPLES ... 131

7.1 Introduction .. 131
7.2 Experiment .. 132
 7.2.1 Bacterial Sample Preparation .. 132
 7.2.2 LIBS Experiment ... 133
7.3 The Identification of S. epidermidis Bacteria in A Sterile Urine Suspension 134
7.4 Identification of Bacteria in Mixed Clinical Samples 137
7.5 The Detection of Bacteria on a Membrane Filtration Method 138
7.6 Summary ... 142
 References ... 144

CHAPTER 8 CONCLUSIONS AND FUTURE WORK .. 146

ABSTRACT .. 151

AUTOBIOGRAPHICAL STATEMENT ... 153
LIST OF TABLES

Table 2.1: The Gram-staining process of bacterial identification ..37

Table 4.1: The composition of the four brass alloys used in this study77

Table 4.2: The strongest emission lines observed in brass LIBS plasmas
 acquired in argon and helium ...79

Table 4.3: The structure matrix for the DFA of four brass alloys
 ablated in an argon atmosphere ..82

Table 5.1: Classification results from the discriminant function analysis
 of M. smegmatis/E. coli mixed samples ..102

Table 5.2: Classification results from the discriminant function
 analysis of 10 different bacteria ...109

Table 6.1: The LIBS classification accuracies of the three tests described in this article125

Table 8.1: A list of some bacteria which need to be analyzed by LIBS148
LIST OF FIGURES

1.1 Diagram of a typical LIBS experiment ...7

2.1 Schematic energy levels of an Nd:YAG laser ..23

2.2 Cylindrical transverse mode patterns TEM_{mn} ..25

2.3 Illustration of plasma shielding effect ...27

2.4 Ionization by multiphoton absorption ...28

2.5 Examples of plasmas as a function of temperature and electron density29

2.6 All the main LIBS processes ...31

2.7 Energy levels and electron transitions ...32

2.8 The cellular structure of a typical bacterial cell ..36

2.9 The schematic drawing of the outer membrane of the Gram-negative bacterium39

2.10 The schematic drawing of the Gram-positive bacterium ..40

3.1 Diagram of a typical LIBS set-up ...50

3.2 High-Power Nanosecond Laser System (Spectra-Physics Lab-150-10)51

3.3 A schematic diagram of the energy attenuation optics ...52

3.4 A picture of the energy attenuation optics ...52

3.5 A schematic diagram of the telescope ...53

3.6 A picture diagram of the telescope ...54

3.7 The schematic side view of the periscope ...55

3.8 A picture side view of the periscope ...56

3.9 A schematic diagram of the purge chamber ..57

3.10 The geometry of an échelle grating ..58

3.11 Operation principle of an échelle spectrograph ..59
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.12 Arrangement of the échelle-Spectrograph (ESA 3000)</td>
<td>60</td>
</tr>
<tr>
<td>3.13 Different turbidity due to the growth of bacterial cells</td>
<td>62</td>
</tr>
<tr>
<td>3.14 Inoculating and employing streak plate techniques to isolate individual bacterial colonies on a solid medium</td>
<td>63</td>
</tr>
<tr>
<td>3.15 E. coli pellet after centrifugation with the supernatant removed</td>
<td>64</td>
</tr>
<tr>
<td>3.16 The bacterial mounting procedure used in this study.</td>
<td>66</td>
</tr>
<tr>
<td>3.17 Three bacterial pads deposited on the agar surface</td>
<td>66</td>
</tr>
<tr>
<td>3.18 The control menu of the ESAWIN software which controlled the timing of the laser and spectrometer</td>
<td>67</td>
</tr>
<tr>
<td>3.19 Temporal history of LIBS plasma</td>
<td>68</td>
</tr>
<tr>
<td>3.20 A LIBS spectrum of E. coli bacteria ablated on agar</td>
<td>69</td>
</tr>
<tr>
<td>3.21 Arrangement of orders in the focal plane of an échelle spectrograph</td>
<td>70</td>
</tr>
<tr>
<td>3.22 The ROI view of the spectrum shown in figure 3.11</td>
<td>71</td>
</tr>
<tr>
<td>4.1 LIBS emission spectra for one of the brass samples in argon and helium</td>
<td>78</td>
</tr>
<tr>
<td>4.2 A DFA plot showing the first two discriminant function scores of LIBS spectra obtained from four brass samples in argon</td>
<td>81</td>
</tr>
<tr>
<td>4.3 A DFA plot showing the first two discriminant function scores of LIBS spectra obtained from four brass samples in helium</td>
<td>84</td>
</tr>
<tr>
<td>4.4 A DFA plot of brass samples tested in both gases sequentially.</td>
<td>85</td>
</tr>
<tr>
<td>4.5 A DFA plot of LIBS spectra from bacterial specimens of two strains of E. coli (Nino C and HIF4714) and Streptococcus mutans ablated in argon and helium</td>
<td>88</td>
</tr>
<tr>
<td>4.6 A DFA plot of three bacterial samples tested sequentially in both argon and helium.</td>
<td>89</td>
</tr>
<tr>
<td>5.1 The first three discriminant function scores from a DFA of the LIBS spectra from pure samples of three different bacteria</td>
<td>100</td>
</tr>
</tbody>
</table>
5.2 DFA plot showing the first two discriminant function scores for the spectra obtained from pure samples of two bacteria: a wild-type strain of *M. smegmatis* and a strain of *E. coli* (C) and four mixtures of those two bacteria at various mixing fraction

5.3 A DFA plot showing the first two DF scores for three different concentrations of *M. smegmatis* (WT)

5.4 A typical LIBS spectrum from the lowest concentration of *M. smegmatis* (WT) tested in this study

5.5 The total spectral power associated with each of the five elements observed in the LIBS spectrum of *M. smegmatis* (WT) ablated in argon as a function of bacterial cell number

5.6 A DFA plot showing the first two DF scores for LIBS spectra from two species of *Staphylococcus* (*aureus* and *saprophyticus*), two species of *Streptococcus* (*viridans* and *mutans*), two conditional mutants of *M. smegmatis* (WT and TE) and four strains of *E. coli* (enterohemorrhagic *E. coli* O157:H7, C, HP4714, and HfrK12)

6.1 Optical micrographs of the bacterial bed mounted on an agar substrate

6.2 A DFA plot of the LIBS spectra from four *E. coli* strains

6.3 A DFA of three specimens of *E. coli* strain C, one specimen of *E. coli* strain ATCC 25922, and one specimen of *M. smegmatis*

6.4 A DFA of three specimens of *S. viridans*, one specimen of *E. coli* strain ATCC 25922, and one specimen of *M. smegmatis*

6.5 A DFA plot of the spectra from many different bacterial specimens: starved *S. viridans*, autoclaved *S. viridans*, UV-irradiated *S. viridans*, starved *E. coli* C, autoclaved *E. coli* C, UV-irradiated *E. coli* C, and *M. smegmatis*

7.1 *E. coli* C bacteria deposited on a membrane filter with 0.45 μm pore size

7.2 A DFA plot of the LIBS spectra from *E. coli* C, *S. epidermidis* harvested from both urine and water, and *S. viridans*

7.3 A DFA plot of the LIBS spectra from *S. epidermidis* harvested from a urine sample and water, *S. aureus* and *S. saprophyticus*

7.4 DFA plot showing the first two discriminant function scores for the spectra obtained from pure samples of two bacteria
7.5 A typical LIBS spectrum from the Millipore cellulose membrane filter in this study ... 139

7.6 A typical LIBS spectrum from E. coli bacteria ablated on the cellulose membrane filter in an argon atmosphere ... 140

7.7 DFA plot showing the first two discriminant function scores for the spectra obtained from, E. coli ATCC 25922, M. smegmatis, E. coli C, and filter ... 142
Chapter 1

Introduction

Bacteria, both pathogenic and non-pathogenic, are the omnipresent companions to human existence. They live all around us and within us. In fact, it was found that the number of bacterial cells that exist in an average healthy adult is estimated to outnumber human cells 10 to 1.\(^1\) Due to their impact on so many aspects of human health and safety, different approaches have been investigated in order to develop biosensing technologies that can be used as robust and rugged tools for the positive identification of bacteria in real-time.\(^2\)

Such technology is urgently needed to identify bacteria in clinical samples at the time when a clinical sample of blood, urine or sputum is obtained, particularly if this could be done with little or no sample preparation. Currently, no such technology exists to fill this role. This ability to identify the bacteria rapidly and onsite would allow doctors to successfully diagnose the disease and then initiate the proper treatment without waiting for offsite lab results to be returned. In addition to that, the integration of new technology could play an important role in the epidemiology of outbreaks of illness such as tuberculosis (TB),\(^3\) not only in the treatment of patients, but also in the tracking of the TB bacteria to help identify the source of infection and to keep the infections from spreading. An accurate rapid identification of bacteria could also minimize the use and overuse of broad spectrum antibiotics. The consequences of such overuse and abuse of broad spectrum antibiotics include not only excessive costs of billions of dollars, but also has led to the ever-increasing emergence of drug resistant bacteria.

This type of new technology would be important not only clinically, but could provide an immediate identification of dangerous pathogens in certain types of foods such as meats,