UNTERSUCHUNGEN ÜBER DIE MITFALLUNG UND SORPTION
VON KOBALTIONEN AN AMORPHEM EISENHYDROXID BEI
ANWESENHEIT VERSCHIEDENER ANIONEN

INAUGURAL-DISSERTATION
zur Erlangung des Grades
Doktor der Naturwissenschaften
im Fachbereich Chemie
der Freien Universität Berlin

vorgelegt von
Fatima Esmaeili
aus Jordanien
1. Einleitung

Die Erscheinung, daß sich Atome oder Moleküle eines Fremdstoffes an einer Oberfläche anreichern, nennt man Adsorption (1). Sie ist eine Folge der Oberflächenkräfte des Festkörpers (Adsorbens), die die Moleküle (Adsorptiv) aus der gasförmigen oder flüssigen Phase an sich binden. Durch Wechselwirkung zwischen Adsorbens und Adsorptiv wird die Adsorptionsphase (Adsorbat) aufgebaut, so daß sich für ein geschlossenes System folgendes Gleichgewicht formulieren läßt (2):

$$\text{Adsorbens} + \text{Adsorptiv} \rightleftharpoons \text{Adsortat} \quad (\text{Gl. 5.1})$$

große Bedeutung hat die Adsorption zur Zeit jedoch im Zusammenhang mit Umwelt- und Umweltschutzproblemen gewonnen, z. B. bei der Reinigung radioaktiven Abwassers, sowie in der Agrarwissenschaft, wo die Adsorptionseigenschaften von Boden die Aufnahme von Nährstoffen beginnenden oder hindern können.

Speziell die Hydroxide des Si, Al, Mg und Fe haben ein großes Sorptionsvermögen, das bei der Entfernung von giftigen Metallen wie Pb und Cd ausgenutzt wird. Eisenhydroxid ist zur Zeit besonders wichtig, da es durch sein hohes Adsorptionsvermögen die Fähigkeit besitzt, selbst geringe Mengen radioaktiver Metallverunreinigungen der Abwasser zu entfernen. Es wurde auch bei der Reinigung des Seewassers von radioaktiven Stoffen, Arsenaten und Phosphaten benutzt (4). In diesem Zusammenhang ist auch die Sorption der stark carcinogen wirkenden Co²⁺-Ionen an geeigneten Adsorbentien von besonderem Interesse (5).

In dem Institut, in dem diese Arbeit entstand, wurde ebenfalls die Adsorption von Kationen an verschiedenen Metallhydroxiden wie Fe(OH)₃ (13,14), Cr(OH)₃ (15) und Al(OH)₃ (16,17,18) untersucht. Es wurde z. B. das Sorptionsverhalten von Co²⁺-Ionen an Al(OH)₃ studiert und mit dem anderer Ionen wie Cd²⁺ und Mn²⁺ verglichen. Außerdem wurden Untersuchungen über die Sorption von Mn²⁺ (14) und Ca²⁺ (19) an Fe(OH)₃

Die vorliegende Arbeit beschreibt die Sorption und Mitfällung von Ca\(^{2+}\)-Ionen an Fe(OH)\(_3\). Ziel dieser Arbeit sollte es sein, das Verhalten des Kobalts bei der Sorption an Fe(OH)\(_3\) zu studieren, eine sinnvolle Interpretation des Reaktionsablaufes zu finden und einen Vergleich mit den Systemen Co\(^{2+}\)/Al(OH)\(_3\) und Mn\(^{2+}\)/Fe(OH)\(_3\) zu ziehen.

Es wurden die Mitfällung und Sorption der Ca\(^{2+}\)-Ionen in Anwesenheit verschiedener Anionen bzw. Kationen untersucht. Außerdem wurden kinetische Messungen durchgeführt, die Auskunft über den Reaktionsablauf geben sollten.