Synthesis and Characterization of Some Transition Metal Complexes of Thiocarbohydrazone Schiff Bases

By
Mohammad Hassan Ababneh

Supervisor: Prof. Dr Fatima Esmadi
Co-advisor: Prof. Dr Mahmoud Al-Talib

August-2010
Synthesis and Characterization of Some Transition Metal Complexes of Thiocarbohydrazone Schiff Bases

By
Mohammad H. Ababneh

Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science at the Chemistry Department, Yarmouk University, Irbid, Jordan, 2010

August 2010

Committee members:

Prof. Dr. Fatima Esmadi
Professor, Inorganic Chemistry

Prof. Dr. Mahmoud Al-Talib
Professor, Organic Chemistry

Prof. Dr. Sabri Mahmoud
Professor, Inorganic Chemistry

Dr. Shehadeh Mizyed
Associate Prof. Organic Chemistry

Dr. Isam Arafa
Associate Prof. Inorganic Chemistry (Jordan University of Science and Technology)
Acknowledgements

First and foremost I should offer my thanks obedience and gratitude to Allah the Great from whom I receive guide and help.

The very considerable assistance and advice provided by Dr. Fatima Esmadi at every stage in the research and preparation of this thesis is acknowledged with gratitude. Also I would like to thank my co-advisor Dr. Mahmoud Al-Talib for his guidance and support.

I extended my sincere thanks to the members of the supervisory committee for their valuable advice.

Great thanks are owed to my parents, brother, sisters, and my friends, their help and encouragement and love will always be remembered.

I wish to extend my thanks to all my colleagues in the chemistry department.

Mohammad Hassan Ababneh
Table of Contents

Acknowledgments.. i
List of Tables... v
List of Figures... vi
Abbreviations.. ix
Abstract... x

Chapter One: Introduction... 1

1.1 Importance of Thiocarbohydrazone Schiff bases and their complexes... 2
1.2 Preparation of Thiocarbohydrazone Schiff Bases............................... 3
1.3 Preparation of Thiocarbohydrazone Schiff Base Complexes................ 4
 1.3.1 Reaction of the thiocarbohydrazone Schiff base with metal ions.... 4
 1.3.2 Template reaction ... 5
1.4 Thiocarbohydrazone Schiff Bases.. 6
1.5 Transition metals Thiocarbohydrazone Schiff base complexes........... 8
 1.5.1 Mononuclear Thiocarbohydrazone Schiff base complexes.......... 8
 1.5.2 Binuclear Thiocarbohydrazone Schiff base Complexes............... 13
 1.5.3 Tetraneuclear Thiocarbohydrazone Schiff base complexes............ 16
1.5.4 Macroyclic Thiocarbohydrazone Schiff base complexes 18
1.6 Characterization of Thiocarbohydrazone Schiff base complexes using Infrared Spectroscopy .. 19
1.7 Purpose of this work .. 21

Chapter Two: Experimental ... 24

2.1 Instrumental .. 24
2.1 Materials ... 25
2.3 Preparation of Thiocarbohydrazide ... 26
2.4 Preparation of Thiocarbohydrazone Schiff bases 26
 2.4.1 Preparation of Bis(Furfural)thiocarbohydrazone 26
 2.4.2 Preparation of Bis(pyrrole-2-
carboxaldehyde)thiocarbohydrazone ... 27
 2.4.3 Preparation of Bis(Thiophene-2-
carboxaldehyde)thiocarbohydrazone ... 27
 2.4.4 Preparation of Bis(Piperonaldehyde)thiocarbohydraone 28
2.5 Preparation of [M(SB)] complexes where M= Cu, Ni, Co, Zn or Fe, SB= PY, FU, TH, PI ... 28
Chapter Three: Results...29

Chapter Four: Discussion...37

4.1 Bis (Piperonaldehyde) thiocarbohydrazone Schiff base...........38

4.2 Schiff base Complexes...39

4.2.1 [M(FU)Cl₂].XH₂O Complexes where M= Ni, Zn, Cu, Co and Fe,
X=2 for Ni, 0 for Cu, Co, Zn and Fe complexes39

4.2.2 [M(PY)Cl₂].XH₂O Complexes where M= Ni, Cu, Co and Fe, X= 0 for Ni and Cu, 2 for Co and Fe45

4.2.3 [M(TH)₂] Complexes where M= Ni, Cu, Co,[Zn(TH)Cl] and
[Fe(TH)Cl₂]..49

4.2.4 [M(PI)₂] complexes where M= Co, Fe, Zn and [Cu(PI)Cl]......53

4.3 Electronic Absorption Spectra..57

4.4 Conclusion...59

References..61

Abstract in Arabic...68
List of Tables

Table 3-1: Elemental Analysis of the Isolated Schiff Base Complexes..............30

Table 3-2: Melting Points, Colors, Percentage Yields, and Molar Conductivities of Schiff Base Complexes..31

Table 3-3: Magnetic Moments and UV-Visible Spectral Data of Schiff Base Complexes..32

Table 3-4: Selected Infrared Bands of the Complexes and the ligands and their assignment..33

Table 3-5: Analytical Data of the Schiff base (PI)..36
List of Figures

Figure [1-1] Examples of some thiocarbohydrazone Schiff bases..................7

Figure [1-2] The structure of 1,5 bis(thiophenylidene)thiocarbohydrazone complexes with Copper, Nickel and Cobalt.................................8

Figure [1-3] The structure of Schiff base complexes synthesized from thiocarbohydrazide and 2,6-Diacetylpyridine with Copper, Manganese and Cobalt...9

Figure [1-4] The structure of bis(3-acetylcoumarin)thiocarbohydrazone complexes with Copper, Nickel and Cobalt...............................10

Figure [1-5] The structure of Schiff base complexes synthesized from thiocarbohydrazide with salicyaldehyde, substituted salicyaldehyde and 2-hydroxy-1-naphthaldehyde with Niobium(V)...11

Figure [1-6] The structure of bis(Isatin) thiocarbohydrazone complexes with Copper, Zinc, Nickel and Cobalt...12

Figure [1-7] The structure of Schiff base complexes synthesized using 2,6-diformyl-p-cresol as parent compound and thiocarbohydrazide various diamines as side arms with Copper, Nickel and Cobalt.................................13
Figure [1-8] The structures of binuclear complexes Synthesized with bis[4-hydroxyucumarin-3-yl]-1N,5N-thiocarbohydrazone and Cu(II),Co(II),Ni(II),Mn(II),Fe(III) and Cr(III) ions..................15

Figure [1-9] X-ray structure of bis(di-2-pyridyl keton)thiocarbohydrazone complex with Nickel..16

Figure [1-10] X-ray structure of bis(o-aminobenzaldehyde) thiocarbohydrazone complex with copper.................................17

Figure [1-11] The structure of bis(benzylthiocarbohydrazone) complexes with Co(II),Ni(II),Cu(II),Cd(II),Pt(IV) and VO^{2+}18

Figure [1-12] The structures of the Schiff bases used in this study........23

Figure [4-1] IR spectrum of bis(piperonaldehyde)thiocarbohydrazone Schiff base...40

Figure [4-2] Mass spectrum of bis(piperonaldehyde)thiocarbohydrazone Schiff base...41

Figure [4-3] ^1H-NMR spectrum of bis(piperonaldehyde)thiocarbohydrazone Schiff base...42

Figure [4-4] IR spectrum of Complex [Ni(FU)Cl_2].2H_2O..................44
Figure [4-5] The proposed structure for (FU) Schiff base complexes........45

Figure [4-6] IR spectrum of Complex [Ni(PY)Cl₂]..47

Figure [4-7] The suggested structure for (PY) Schiff base complexes..........48

Figure [4-8] IR spectrum of Complex [Fe(TH)Cl₂]...50

Figure [4-9] The proposed structures for (TH) Schiff base complexes........52

Figure [4-10] IR spectrum of Complex [Fe(PI)_2]..54

Figure [4-11] The suggested structure for (PI) Schiff base complexes........56

Figure [4-12] The electronic absorption spectrum of [Co(PI)₂].....................58
Abbreviations

FU: bis(furfural)thiocarbohydrazone.

PY: bis(pyrrole-2-carboxyaldehyde)thiocarbohydrazone.

TH: bis(thiophen-2-aldehyde)thiocarbohydrazone.

PI: bis(piperonaldehyde)thiocarbohydrazone.

DMSO: Dimethylsulfoxide.

SB: Schiff base
Abstract:

Thiocarbohydrazones Schiff base complexes were prepared from the reaction of bis (furfural) thiocarbohydrazone(FU), bis (pyrrole-2-carboxaldehyde) thiocarbohydrazone(PY), bis (thiophen-2-aldehyde) thiocarbohydrazone(TH) and bis(piperonaldehyde)thiocarbohydrazone(PI) with Cu(II), Zn(II), Co(II), Ni(II) and Fe(II) metal ions. The Schiff bases were prepared from the reaction of thiocarbohydrazide with furfural, pyrrole-2-carboxyaldehyde, thiophene-2-aldehyde and pipronaldehyde. One of these Schiff bases is new, which is PI, whereas the others have been prepared and characterized previously.

The new synthesized complexes were found to have the general formulas [M(FU)Cl₂] where M is Cu(II), Zn(II), Co(II), Fe(II) and [Ni(FU)Cl₂].2H₂O, [M(PY)Cl₂].XH₂O where M is Cu(II), Co(II), Ni(II) and Fe(II), X= 0 for nickel and copper, 2 for cobalt and iron, [M(TH)₂] where M is Cu(II), Co(II) and Ni(II), [M(TH)Clₓ] where M is Fe(II), x=2 and Zn(II), x=1, [M(PI)₂] where M is Zn(II), Co(II) and Fe(II) and [Cu(PI)Cl].