COMPACTIFICATIONS AND F-SPECTRAL SPACES

CEREN SULTAN ELMALI (1) AND TAMER UGUR (2)

Abstract. If X is T_3, it is showed that the Fan-Gottesman compactification of X can be embedded into compactification (X^*, k) of X obtaining by a combined approach of nets and open filters. By F-spectral, we mean a topological space X such that the Fan-Gottesman compactification of X is a spectral space. We give necessary and sufficient conditions on X in order to get F-spectral.

1. Introduction

The first section of this paper contains some preliminaries about net, filters and a process of obtaining a compactification (X^*, k) of an arbitrary topological space X. In 2005, Hueytzen J. Wu and Wan-Hong Wu described a process of obtaining a compactification of an arbitrary topological space by a combined approach of nets and open filters. Besides they showed the relation among Wallman, Stone-Cech and (X^*, k) compactification under some conditions [12].

In the second section of our paper contains some information about Wallman and Fan-Gottesman compactification. In 1938, Henry Wallman introduced compactification of T_1 spaces having a normal base [6],[9] which is also called Wallman compactification [10]. In 1952, Ky Fan ve Noel Gottesman constructed a compactification, also called Fan-Gottesman compactification, for a regular space with a normal base

2000 Mathematics Subject Classification. 201054D35, 54D70.

Key words and phrases. net, open filter, ultrafilter, normal base, Fan-Gottesman compactification, Wallman compactification, H-spectral space, F-spectral space.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: Sept.12 , 2012 Accepted : Nov. 23 , 2013
Their method is similar to Wallman compactification. In [5] it is investigated relation between Fan-Gottesman and Wallman compactifications and showed that Fan-Gottesman compactification of some interesting and specific spaces such as normal A_2 and T_4 is Wallman-type compactification. At the end of this section, if studied space is T_3, we show that the Fan-Gottesman compactification of X can be embedded into the compactification (X^*, k). Also we examined the relation between Wallman and Fan-Gottesman compactification via net and filters.

In the third section of this paper contains some preliminaries about T_0 compactification and spectral spaces. In 1993 Herrlich has constructed [7] with any T_0-space X, a minimal compactification $\beta_{w}X$ called the T_0-compactification of X. For T_1 space, the extension $\beta_{w}X$ coincides with the Wallman compactification γX of X. In 2004 Karim Belaid, Othman Echi and Riyadh Gargouri [1] have characterized topological spaces X such that one point compactification of X is a spectral space. In 2006 Karim Belaid [2], gave some properties of H-spectral space which he means a topological space X such that its T_0-compactification is spectral. Also he gave necessary and sufficient condition on the T_1-space X in order to get its Wallman compactification spectral. At the end of this section, we define F-spectral spaces and investigate necessary and sufficient condition in order that Fan-Gottesman compactification of T_3-space is spectral.

2. Nets, filters and (X^*, k) compactification

Let A be a family of continuous functions on a topological space X. A net (x_λ) in X will be called an $A-$net, if $(f(x_\lambda))$ converges for each f in A. Then X is compact if

1. $f(X)$ is contained in a compact subset C_f for each f in A, and
2. Every $A-$net has a cluster point in X.

Let X be any arbitrary topological space, $C^*(X) = \{f_\alpha : \alpha \in \Lambda\}$ the family of all bounded real-valued continuous functions on X. For a $C^*(X)$-net (x_i), let

$$\mathcal{F}_{(x_i)} = \{ U : U \text{ is open in } X \text{ and } (x_i) \text{ residually in } U \}$$

It is clear that $\mathcal{F}_{(x_i)}$ is an open filter, and for any $f_\alpha \in C^*(X)$, any $\varepsilon > 0$, $f_\alpha^{-1}((\delta_\alpha - \varepsilon, \delta_\alpha + \varepsilon)) \in \mathcal{F}_{(x_i)}$, where $\delta_\alpha = \lim (f_\alpha(x_i))$. It is called $\mathcal{F}_{(x_i)}$ the open filter on X induced by (x_i).

Definition 2.1. If F is a filter on X, let $\Lambda_F = \{(x, F) : x \in F \subset F\}$. Then Λ_F is directed by the relation $(x_1, F_1) \leq (x_2, F_2)$ if $F_2 \subset F_1$, so the map $P : \Lambda_F \to X$ defined by $P(x, F) = x$ is a net in X. It is called the net based on F.

Lemma 2.1. A filter F converges to x in X if the net based on F converges to x.

Corollary 2.1. Let Q be an open filter on X, (x_i) is the net based on Q, and

$$I = \{ U : U \text{ is open in } X \text{ and } (x_i) \text{ is in } U \}$$

Then $I = Q$.

For each $C^*(X)$-net (x_i) in X, let $\left(w_n^{(x_i)} \right)$ be the net based on the open filter $\mathcal{F}_{(x_i)}$ induced by (x_i). It is clear by Definition 2.1, Lemma 2.1, and corollary 2.1. that:

1. $\left(w_n^{(x_i)} \right)$ is uniquely determined by $\mathcal{F}_{(x_i)}$ and $\mathcal{F}_{(x_i)} = \mathcal{F}_{(x_j)}$ if $\left(w_n^{(x_i)} \right) = \left(w_n^{(x_j)} \right)$

2. $\mathcal{F}_{(x_i)} = \mathcal{F}_{w_n^{(x_i)}} = \{ G : G \text{ is open in } X \text{ and } \left(w_n^{(x_i)} \right) \text{ is residually in } G \}$

3. $\left(w_n^{(x_i)} \right)$ is a $C^*(X)$-net and $\lim (f_\alpha \left(w_n^{(x_i)} \right)) = \lim (f_\alpha(x_i))$ for all f_α in $C^*(X)$

4. The following are equivalent:
 a. $\left(w_n^{(x_i)} \right)$ converges to x,
 b. (x_i) converges to x
 c. $\mathcal{F}_{(x_i)}$ converges to x.
In order to avoid the confusion between \((w_n(x_i))^* \) as a net in \(X \) and \((w_n(x_i)) \) as a point in a set, we will use \((w_n(x_i))^* \) to represent \((w_n(x_i)) \) when it regarded as a point in a set just as in [12] .

Let \(Y = \{ (w_n(x_i))^* : (x_i) \text{ is a } \text{C}^* \text{ - net that does not converge in } X \} \) and it is noted that \((w_n(x_i)) \) is the net based on \(F_{(x_i)} \). \(X^* = X \cup Y \), the disjoint union of \(X \) and \(Y \). For each open set \(U \subset X \), define \(U^* \subset X^* \) to be the set

\[
U^* = U \cup \left\{ (w_n(x_i))^* : (w_n(x_i))^* \in Y \text{ and } (w_n(x_i)) \text{ is residually in } U \right\}
\]

It is clear that if \(U \subset V \), then \(U^* \subset V^* \). It is seen that \(\beta = \{ U^* : U \text{ is open in } X \} \) is a base for a topology on \(X^* \).

Let \(k : X \rightarrow X^* \) be defined by \(k(x) = x \). Then \(k \) is a continuous function from \(X \) into \(X^* \). Moreover \(k(X) \) is dense in \(X^* \) and \((X^*, k) \) is compactification of \(X \).

Let us cite [11],[12] for detailed information about this section.

3. Wallman and Fan Gottesman compactification

The Wallman compactification is defined in [11] as follows.

Let \(X \) be a \(T_2 \) space and \(\gamma X \) be the collection of all closed ultrafilters on \(X \). For each closed set \(D \subset X \), define \(D \subset \gamma X \) to be the set \(D = \{ F \in \gamma X : D \in F \} \). Let \(\zeta = \{ D : D \text{ is closed subset of } X \} \) be the base for the closed sets of the topology on \(\gamma X \), and let \(h : X \rightarrow \gamma X \) be defined by \(h(x) = F_x \), the closed ultrafilter converging to \(x \) in \(X \). Then \((\gamma X, h) \) is the Wallman compactification of \(X \).

Now we investigate how Wallman compactification is obtained via normal base.

Let \(\beta \) is a class of closed sets in \(X \). If it satisfies following three conditions, \(\beta \) is called normal base.

1) \(\beta \) is closed under finite intersection and unions.
2) If \(x \) is not contained in the closed set \(A \), there is a set \(B \in \beta \) such that \(x \in B \subset X - A \).
3) If \(A_1 \cap A_2 = \emptyset \), for \(\forall A_1, A_2 \in \beta \), there exist sets \(A_m, A_n \in \beta \) such that \(A_1 \subset X - A_n, A_2 \subset X - A_m, A_n \cup A_m = X \).

Let \(X \) be a \(T_1 \) space having a normal base and \(\beta \) be a normal base in \(X \). It is considered \(K \) space whose element is denoted by letter as \(a', b', \ldots \) consist of finite number of \(F_i \) in \(X \) such that

\[
F_1 \cap F_2 \cap F_3 \cap \ldots \cap F_n \neq \emptyset
\]

and maximal with respect to above property. Let \(\tau (F) = \{a' \in K : F \in a'\} \). It is defined topology of \(K \) with a family of sets \(\delta = \{\tau (F) : F \in \beta\} \) a base of closed set. \(K \) is a compact space and compactification of \(X \). This compactification is called Wallman compactification [6],[9],[10]. In order to avoid the confusion it is denoted by \(\gamma X \).

There is very little difference between Fan-Gottesman and Wallman compactification, \(\beta \) forming Wallman compactification is a normal base for closed sets but \(\beta \) forming Fan-Gottesman compactification is a normal base for open sets. It shall not be forgotten that both of these satisfy conditions of normal base.

It is considered that \(X \) is a regular space having a base for open set \(\beta \) which satisfies above three properties of normal base. But Ky Fan and Noel Gottesman used for any \(A \in \beta \) and any open set \(G \) of \(X \) such that \(cl_x A \subset G \), there exist a \(B \in \beta \) such that \(cl_x A \subset B \subset cl_x B \subset G \), where closure of \(A \) in \(X \) will be denoted \(cl_x A \), instead of if \(A_1 \cap A_2 = \emptyset \), for \(\forall A_1, A_2 \in \beta \), there exist sets \(A_m, A_n \in \beta \) such that

\[
A_1 \subset X - A_n, A_2 \subset X - A_m, A_n \cup A_m = X
\]

A chain family on \(\beta \) is a non-empty family of sets of \(\beta \) such that

\[
cl_x A_1 \cap cl_x A_2 \cap cl_x A_3 \cap \ldots \cap cl_x A_n \neq \emptyset
\]
for any finite number of sets A_i of the family. Every chain family on β is contained in at least one maximal chain family on β by Zorn's lemma. Maximal chain families on β will be denoted by letters as $a^*, b^*, ...$ and also the set of all maximal chain families on β will be denoted by FX. FX is a compact, hausdorff spaces and compactification of regular spaces X. This compactification is called Fan-Gottesman compactification [6].

We know the relation between Wallman and Fan-Gottesman compactifications of some specific spaces from [5]. Therefore, we can obtain the Fan-Gottesman compactification by defining the base via nets and filters like the Wallman compactification.

Definition 3.1. Let X be a T_3 space and κX the subcollection of all open ultrafilters on X. For each open set $O \subset X$, define $O^* \subset \kappa X$ to be the set

$$ O^* = \left\{ \hat{G} \in \kappa X : O \subset \text{cl}_X O \subset V, \text{V is open in } X \text{ and } V \in \hat{G} \right\} $$

Let Φ is the $\{O^* : O \text{ is open subset of } X\}$ set. It is clear that Φ is the base for open sets of topology on κX. κX is a compact space and the Fan-Gottesman compactifications of X. In order to avoid the confusion it is denoted by κX.

On the other hand, for each closed set $D \subset X$, we define $D^* \subset \kappa X$ by

$$ D^* = \left\{ \hat{G} \in \kappa X : G \subseteq D \text{ for some } G \text{ in } \hat{G} \right\} $$

The following properties of κX are useful

1. If $U \subset X$ is open, then $\kappa X - U^* = (\kappa X - U)^*$
2. If $D \subset X$ is closed, then $\kappa X - D^* = (\kappa X - D)^*$
3. If U_1 and U_2 are open in X, then $(U_1 \cap U_2)^* = U_1^* \cap U_2^*$ and $(U_1 \cup U_2)^* = U_1^* \cup U_2^*$

Theorem 3.1. The Fan-Gottesman compactification κX of X can be embedded into the compactification (X^*, k) of X, if X is T_3.
Proof. We must define a map from κX to (X^*, k) and show that the map is an embedding.

Firstly, let (X^*, k) be compactification of X defined as section 1.

Let $\varphi : \kappa X \to (X^*, k)$ be defined by setting that $\varphi(\hat{G}_x) = x$, if \hat{G}_x is the open ultrafilters converging to x in X; $\varphi(\hat{G}) = \left(\left(w_n(\hat{G})\right)^*\right)$ and $\left(\left(w_n(\hat{G})\right)\right)$ is the net based on \hat{G}, moreover $\left(\left(w_n(\hat{G})\right)\right)$ is the ultranet in X, if \hat{G} is open ultrafilter that does not converge in X. That is:

$$\varphi = \begin{cases} x & \text{if } \hat{G}_x \text{ is the open ultrafilters converging to } x \text{ in } X \\ \left(\left(w_n(\hat{G})\right)\right)^* & \text{if } \hat{G} \text{ is open ultrafilter that does not converge in } X \end{cases}$$

From conclusion of Lemma 2.1., $\left(\left(w_n(\hat{G})\right)\right)$ is a $C^*(X) - net$ that does not converge in X. Since $\left(\left(w_n(\hat{G})\right)\right)$ is the net based on \hat{G} thus by corollary 2.1., the open filter $\hat{G}_{w_n(\hat{G})}$ induced by $\left(\left(w_n(\hat{G})\right)\right)$ is exactly \hat{G}. Hence $\left(\left(w_n(\hat{G})\right)\right)$ is in Y defined as section 2. Since X is a T_3, X is a Hausdorff then for $\forall \, x \neq y$ there exist open neighborhoods U_x of x and U_y of y such that $U_x \cap U_y = \emptyset$. G_x converging to x and G_y converging to y imply that $U_x \supset A$ for some $A \in G_x$ and $U_y \supset B$ for some $B \in G_y$.

If $G_x = G_y$ then A and B are both in G_x and $A \cap B \neq \emptyset$. Hence $U_x \cap U_y \supset A \cap B \neq \emptyset$. This contradicts the fact that $U_x \cap U_y = \emptyset$. So $G_x = G_y$ implying $x = y$. Therefore both \hat{G} and $\left(\left(w_n(\hat{G})\right)\right)$ are uniquely determined by a given open ultrafilter \hat{G} that does not converge in X. Thus φ is well-defined.

Secondly, we show that φ is an injective map.

1) If \hat{G}_x and \hat{G}_y are two open ultra filters converging to x and y, respectively, and $\hat{G}_x \neq \hat{G}_y$. Then $\varphi(\hat{G}_x) = x$ and $\varphi(\hat{G}_y) = y$. Then, there exist $U_0 \in \hat{G}_x$ and $V_0 \in \hat{G}_y$ such that $U_0 \cap V_0 = \emptyset$. Since \hat{G}_x converges to x and \hat{G}_y converges to y, so $x \in U$ for all $U \in \hat{G}_x$ and $y \in V$ for all $V \in \hat{G}_y$. Thus $U_0 \cap V_0 = \emptyset$ implies that $x \neq y$.

2) If \hat{G}_1, \hat{G}_2 are two open ultra filters that don’t converge in X and $\hat{G}_1 \neq \hat{G}_2$, then $\varphi(\hat{G}_1) = \left(w_n^{(\hat{G}_1)} \right)^* \text{ and } \varphi(\hat{G}_2) = \left(w_n^{(\hat{G}_2)} \right)^*$. Since \hat{G}_1, \hat{G}_2 are two different open ultra filters, the nets $\left(w_n^{(\hat{G}_1)} \right)$ and $\left(w_n^{(\hat{G}_2)} \right)$ based on \hat{G}_1 and \hat{G}_2, respectively, are different. That is $\left(w_n^{(\hat{G}_1)} \right) \neq \left(w_n^{(\hat{G}_2)} \right)$. Hence $\left(w_n^{(\hat{G}_1)} \right)^* \neq \left(w_n^{(\hat{G}_2)} \right)^*$ in Y.

3) If \hat{G}_x is an open ultra filters converging to x in X and \hat{G} is a open ultra filters that does not converge in X, then $\hat{G}_x \neq \hat{G}$. Since $\varphi(\hat{G}_x) = x \in X$, $\varphi(\hat{G}) = \left(w_n^{(\hat{g})} \right)^* \in Y$ and $X \cap Y = \emptyset$, so $\varphi(\hat{G}_x) \neq \varphi(\hat{G})$. Therefore, φ is one to one.

Thirdly, φ and φ^{-1} are continuous. Let U^* be open set in β defined as section 2; i.e., $U^* = U \cup \left\{ \left(w_n^{(x_i)} \right)^* : (w_n^{(x_i)})^* \in Y \text{ and } (w_n^{(x_i)}) \text{ is residually in } U \right\}$ then $\varphi^{-1}(U^*) = \left\{ \hat{G}_x : x \in U \right\} \cup \left\{ \hat{G} : \left(w_n^{(\hat{g})} \right) \text{ is residually in } U \right\}$. If \hat{G}_x converges to x in U, then there is an open set $H \in \hat{G}_x$ such that $H \subset U$. This implies that $(X - U) \notin \hat{G}_x$; i.e., $\hat{G}_x \in \kappa X - (X - U)^*$. If $\left(w_n^{(\hat{g})} \right)$ is eventually in U, since $\left(w_n^{(\hat{g})} \right)$ is the net based on \hat{G}, the corollary 2.1. implies that U is in \hat{G}, thus \hat{G} is eventually U; i.e., there exists an G in \hat{G} such that $G \subset U$. This implies again that $(X - U) \notin \hat{G}_x$ and therefore $\hat{G}_x \in \kappa X - (X - U)^*$. Thus $\varphi^{-1}(U^*) \subset \kappa X - (X - U)^*$. For $\kappa X - (X - U)^* \subset \varphi^{-1}(U^*)$, let \hat{G} be open ultrafilter in $\kappa X - (X - U)^*$, then $(X - U) \notin \hat{G}$. This implies that there exists an $G_0 \in \hat{G}$ such that $G_0 \cap (X - U) = \emptyset$; i.e., $G_0 \subset U$. Hence,

a) If \hat{G} converges to a point x in X; i.e., $\hat{G} = \hat{G}_x$. Then x is in G for all G in \hat{G}_x and thus $x \in G_0 \subset U$. This implies that $\hat{G} = \hat{G}_x$ in $\varphi^{-1}(U^*)$

b) If \hat{G} does not converge in X, $G_0 \subset U$ implies that \hat{G} is eventually in U, i.e., $U \in \hat{G}$. So, the net $\left(w_n^{(\hat{g})} \right)$ based on \hat{G} is eventually in U; i.e., \hat{G} is in $\varphi^{-1}(U^*)$. Thus $\varphi^{-1}(U^*) = \kappa X - (X - U)^*$ is open in κX. Hence φ is continuous. Since $\varphi^{-1}(U^* \cap \varphi(\kappa X)) = \varphi^{-1}(U^*) \cap \varphi^{-1}(\varphi(\kappa X)) = (\kappa X - (X - U)^*) \cap \kappa X = \kappa X - (X - U)^*$, thus $\varphi(\kappa X - (X - U)^*) = U^* \cap \varphi(\kappa X)$ is an open in $\varphi(\kappa X)$ for
any open set $\kappa X - (X - U)^*$ in κX. Hence, φ^{-1} is continuous on $\varphi(\kappa X)$. Therefore, φ is an embedding of κX into X^*.

Theorem 3.2. The Wallman compactification $(\gamma X, h)$ of X can be embedded into the Fan-Gottesman compactification of X, if X is T_3.

Proof. It is defined a map from γX into κX to proof the theorem. It is considered base defined by closed ultrafilter as a normal base. Let $\vartheta : \gamma X \to \kappa X$ be defined by setting that $\vartheta(F_x) = \hat{G}_x$ such that x contained in \hat{G}_x, if F_x is the closed ultrafilter converging to x in X. $\vartheta(F) = \left(\left(\hat{F}_n\right)^*\right)^*$, $\left(\hat{F}_n\right)^*$ is the net based on open filter \hat{G}, if F is the closed ultrafilter that does not converging in X.

$$\vartheta = \begin{cases}
\hat{G}_x, & \text{if } F_x \text{ is the closed ultrafilter converging to } x \text{ in } X \\
\left(\left(\hat{F}_n\right)^*\right)^*, & \text{if } F \text{ is the closed ultrafilter that does not converging in } X
\end{cases}$$

It must be shown that ϑ is an embedding between γX and κX. If F_x and F_y are two closed ultra filters converging to x and y, respectively, and $F_x \neq F_y$. Then $\vartheta(F_x) = \hat{G}_x$ and $\vartheta(F_y) = \hat{G}_y$. Then $\hat{G}_x \neq \hat{G}_y$. If F_1, F_2 are two closed ultra filters that don’t converge in X and $F_1 \neq F_2$, then $\vartheta(F_1) = \left(\left(\hat{F}_n^{(F_1)}\right)^*\right)^*$ and $\vartheta(F_2) = \left(\left(\hat{F}_n^{(F_2)}\right)^*\right)^*$. Since F_1, F_2 are two different open ultra filters, the nets $\left(\left(\hat{F}_n^{(F_1)}\right)^*\right)^*$ and $\left(\left(\hat{F}_n^{(F_2)}\right)^*\right)^*$ based on F_1 and F_2, respectively, are different. Then $\left(\left(\hat{F}_n^{(F_1)}\right)^*\right)^* \neq \left(\left(\hat{F}_n^{(F_2)}\right)^*\right)^*$ in Y. If F_x is a closed ultrafilters converging to x in X and F is a closed ultrafilters that does not converge in X, then $F_x \neq F$. Since $\varphi(F_x) = \hat{G}_x$, x contained in \hat{G}_x, $\varphi(F) = \left(\left(\hat{F}_n\right)^*\right)^*$, so $\varphi(F_x) \neq \varphi(F)$. Therefore, ϑ is one to one.

Let U^* be open set in β; i.e.,

$$U^* = \{ \hat{G} \in \kappa X : U \subset \text{cl}_X U \subset V, \text{ } V \text{ is open in } X \text{ and } V \in \hat{G} \}$$
then \(\vartheta^{-1}(U^\bullet) = \{ F_x : x \in U \} \cup \left\{ F : \left(w_n^{(F)} \right) \text{ is eventually in } U \right\} \). If \(F_x \) converges to \(x \) in \(U \), then, there is an \(F \) in \(F_x \) such that \(F \subset U \). If \(\left(w_n^{(F)} \right) \) is eventually in \(U \), since \(\left(w_n^{(F)} \right) \) is the net based on open filter \(\mathcal{G} \) induced by \(F \), \(F \) is eventually in \(U \). Hence, if \(F_x \) converges to \(x \) in \(X \), it is clearly seen that \(F_x = F \). If \(F_x \) does not converge to \(x \) in \(X \), then, \(U \in \mathcal{G} \). So, the net \(\left(w_n^{(F)} \right) \) based on \(G \) is eventually in \(U \). If \(\left(w_n^{(F)} \right) \) is eventually in \(\vartheta^{-1}(U^\bullet) \). Thus \(\vartheta^{-1}(U^\bullet) = \gamma X - (X - U) \) is an open in \(\gamma X \). Hence \(\vartheta \) is continuous.

Since \(\vartheta^{-1}(U^\bullet \cap \vartheta(\gamma X)) = \vartheta^{-1}(U^\bullet) \cap \vartheta^{-1}(\gamma X) = \left(\vartheta^{-1}(\gamma X - (X - U)) \cap \gamma X = \gamma X - (X - U) \right) \cap \gamma X = \gamma X - (X - U) \), \(\vartheta \left(\vartheta^{-1}(\gamma X - (X - U)) \right) = U^\bullet \cap \vartheta(\gamma X) \) is open in \(\vartheta(\gamma X) \) for any open set \(\gamma X - (X - U) \) in \(\gamma X \). Hence, \(\vartheta^{-1} \) is continuous on \(\vartheta(\gamma X) \). Therefore \(\vartheta \) is an embedding of \(\gamma X \) into \(\kappa X \). \(\square \)

4. \(T_0 \)-compactification and H-spectral space

Let \(R \) be a commutative ring with identity. Spectrum or prime spectrum of \(R \), denoted \(\text{Spec}(R) \), is the set of prime ideals of \(R \). The topology on \(\text{Spec}(R) \) defined by closed set \(Z(I) = \{ C \in \text{Spec}(R) : I \subseteq C \} \) for ideals \(I \) of \(R \) is called Zariski topology on \(\text{Spec}(R) \).

By definition, the closure in the Zariski topology of the singleton set \(\{ P \} \) in \(\text{Spec}(R) \) consist of all prime ideals of \(R \) contain \(P \). In particular, a point \(P \) in \(\text{Spec}(R) \) is closed in the Zariski topology if and only if the prime ideal \(P \) is not contained in any other prime ideals of \(R \), i.e., if and only if \(P \) is a maximal ideal \([3]\).

A topological space is called spectral if it is homeomorphic to the prime spectrum or a ring equipped with Zariski topology. M. Hochster \([8]\) has characterized spectral spaces as follows:

A space \(X \) is spectral if and only if the following axioms hold:

1. Every nonempty irreducible closed subset of \(X \) is the closure of a unique point (that is, sober)
(2) X is compact;
(3) The compact open sets form a basis of X;
(4) The family of compact open sets of X is closed under finite intersections.

H. Herrlich has introduced the following construction [7]

Let X be a T_0-space. Consider the set $\Gamma(X)$ of all filters F on X that satisfy the following two conditions:

(1) F does not converge in X.
(2) Every finite open cover of X contains some member of F

Let $\Omega(X)$ is the set of minimal elements of $\Gamma(X)$ and define:

$\mathbf{a}: \ X^*_w = X \cup \Omega(X)$.

$\mathbf{b}: \ A^*_w = A \cup \{ F : F \in \Omega(X) \text{ and } A \in F \}$

$\beta_w = \{ A^*_w : A \text{ open in } X \}$ is a base for a topology τ^*_w on X^*_w. (X^*_w, τ^*_w) is compact and called T_0-compactification of X and denoted by $\beta_w X$.

Also, the following properties hold:

(1) If $\beta_w X$ is sober, then X is sober.
(2) If $\beta_w X$ is spectral, then X is sober.
(3) If $\beta_w X$ is normal, then X is normal
(4) If X is normal, then for each distinct elements H and G of $\beta_w X$ there exist two disjoint open sets U and V of X such that $H \in U^*_w$ and $G \in V^*_w$.
(5) If X is normal sober space, then $\beta_w X$ is sober.

Definition 4.1. A subset N of a space X is called nearly closed in X, if there exist a finite subset δ_x of δ and neighborhood V_x of x with $(V_x \cap N) \subseteq \bigcup_{\delta_x, \delta_x \in \delta_x} \delta_x$ for every open cover δ of N and every point x of X.

The specialization order of a topological space X is defined by $x \leq y$ if and only if $y \in \{ x \}$. We denoted by $(x \uparrow) = \{ y \in X : x \leq y \}$ and $(\downarrow x) = \{ y \in X : y \leq x \}$.

Proposition 4.1. Let \(X \) be a \(T_0 \)-space such that \((\downarrow x) \cap (\downarrow F) = \emptyset \) for each \(x \in X \) and each \(F \notin (x \uparrow) \cap \Omega(X) \). If \(X \) is H-spectral space, then the following properties hold:

1. If \(C \) is compact open set of \(\beta w X \), then \(C \cap X \) is nearly closed set of \(X \).
2. The nearly closed and open sets form a basis of \(X \).
3. If \(U, V \) are two open sets such that \(U \cup V = X \). Then there exists an open nearly closed set \(N \) of \(X \) such that \(N \subseteq U \) and \(N \cup V = X \).

Remark 1. If \(X \) is \(T_1 \)-space, then \((\downarrow x) \cap (\downarrow F) = \emptyset \) for each \(x \in X \) and each \(F \notin (x \uparrow) \).

Let us cite [2, 6] for detailed information about this topic.

Karim Belaid at al. [1] have characterized A-spectral spaces (that is; one point compactification of \(X \) is spectral space) and he give some properties of H-spectral spaces (that is; \(T_0 \)-compactification of \(X \) is spectral space) and defined W-spectral spaces (that is; Wallman compactification of \(X \) is spectral space) and characterized of W-spectral spaces [2].

Definition 4.2. Let \(X \) be a \(T_3 \) space. If its Fan-Gottesman compactification is spectral, it is called F-spectral space [4].

Theorem 4.1. Let \(X \) be a \(T_3 \) space. Then \(X \) is an F-spectral if and only if there exists a clopen set \(U \) such that \(G \subseteq U \) and \(H \cap U = \emptyset \) for each disjoint open set \(G \) and \(H \) of \(X \).

Proof. (\(\Rightarrow \)) If \(G \cap H = \emptyset \), then \((X - G) \cup (X - H) = X \). By 4.1. Proposition and Remark, there is an open nearly closed set \(K \) such that \(K \subseteq (X - G) \) and \(K \cup (X - G) = X \). Therefore \(G \subseteq (X - K) \) and \(G \cap (X - K) = \emptyset \). On the other hand \(\kappa X \) and \(X \) are Hausdorff, we get that \((X - K) \) is clopen.
(⇐) Let $\gamma = \{ U^* : U \text{ clopen set of } X \}$. Let V be an open set of X and $x \in V^*$. If $x \in V$, then $\{ x \}$ is closed. Because X be a T_3 space, X be a T_1 and regular. Hence there exists a clopen set U such that $\{ x \} \subseteq U \subseteq V$. Thus U^* is clopen neighborhood of x such that $U^* \subseteq V^*x = \mathcal{R} \in V^* \cap \Omega(X)$, where $\Omega(X)$ is the set of minimal elements of all filters on X. For $\varphi \in \kappa X - U^*$, there exist $G \in \mathcal{R}$ and $H \in \varphi$ such that $G \cap H = \emptyset$. Thus there exists a clopen set U_φ of X such that $G \subseteq U$ and $G \in (X - U_\varphi)$. Hence $\{(X - U_\varphi)^* : \varphi \in \kappa X - V^* \}$ is an open cover of $\kappa X - V^*$. Since $\kappa X - V^*$ is compact, there is a finite collection $\{(X - U_\varphi)^* : \varphi \in I \}$ such that $\kappa X - V^* = \bigcup \{ (X - U_\varphi)^* : \varphi \in I \}$. Let $U_{\mathcal{R}} = \bigcap \{ U_\varphi : \varphi \in I \}$. It is immediate that $U_{\mathcal{R}}^*$ is a clopen neighborhood of \mathcal{R} such that $U_{\mathcal{R}}^* \subseteq V^*$. Therefore, γ is bases of κX. Since each element of γ is clopen, γ is basis of compact sets closed under finite intersection. Every nonempty irreducible close subset of κX is closure of unique point (that is sober). Thus κX is spectral.

Conclusion 4.1. Let X be a T_3 space. If X is an F-spectral, then X is a W-spectral.

Proof. Since X is a T_3 space. The Wallman compactification $(\gamma X, h)$ of X can be embedded into the Fan-Gottesman compactification of X from Theorem 2.1. On the other hand, for each disjoint open set G and H of X, there exists a clopen set U such that $G \subseteq U$ and $H \cap U = \emptyset$, since X is an F-spectral. Then X is a W-spectral from definition of relative topology and 2.4 Theorem in [2].

References

(1) Department of Mathematics, Faculty of Science, Erzurum Technic University, Erzurum, 25100, Turkey.

E-mail address: ceren.elmali@erzurum.edu.tr

(2) Department of Mathematics, Faculty of Science, Atatürk University, Erzurum, 25240, Turkey.

E-mail address: tugur@atauni.edu.tr