Abstract. In this paper, some properties of \(\alpha grw\)-continuous functions are discussed and the notion of \(\alpha grw\)-closed graph is introduced.

1. Introduction

The Pasting lemma for continuous functions has applications in algebraic topology. The continuous functions defined on closed sets of a locally finite covering of a topological space can be pasted to form a continuous function on the whole space. Several mathematicians have established pasting lemmas for some stronger and weaker forms of continuous functions. In this paper pasting lemma for \(\alpha grw\)-continuous functions is proved and also \(\alpha grw\)-closed graph functions are introduced in topological spaces.

Throughout this paper, the space \((X, \tau)\) (or simply \(X\)) always means a topological space on which no separation axioms are assumed unless explicitly stated. For a subset \(A\) of a space \(X\), \(cl(A)\), int\((A)\) and \(X - A\) (or \(A^c\)) denote the closure of \(A\), the interior of \(A\) and the complement of \(A\) in \(X\) respectively.

2. Preliminaries

Definition 2.1. A subset \(A\) of a topological space \((X, \tau)\) is called

(1) regular open [12] if \(A = int(cl(A))\) and regular closed if \(A = cl(int(A))\).
(2) pre-open [7] if \(A \subseteq \text{int}(cl(A)) \) and pre-closed if \(\text{cl}(\text{int}(A)) \subseteq A \)
(3) \(\beta \)-open [1] if \(A \subseteq \text{cl}(\text{int}(A)) \) and \(\beta \)-closed if \(\text{int}(\text{cl}(A)) \subseteq A \).
(4) \(\alpha \)-open [8] if \(A \subseteq \text{int}(\text{cl}(A)) \) and \(\alpha \)-closed [6] if \(\text{cl}(\text{int}(A)) \subseteq A \).

Definition 2.2. [3] A subset \(A \) of a space \((X, \tau) \) is called regular semi-open if there is a regular open set \(U \) such that \(U \subseteq A \subseteq \text{cl}(U) \). The family of all regular semi-open sets of \(X \) is denoted by \(\text{RSO}(X) \).

Definition 2.3. [9] A subset \(A \) of a topological space \((X, \tau) \) is said to be \(\text{agrw}\)-closed if \(\text{cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is regular semi-open.

A subset \(A \) of a topological space \((X, \tau) \) is said to be \(\text{agrw}\)-open [11] if \(A^c \) is \(\text{agrw}\)-closed.

The set of all \(\text{agrw}\)-closed sets and \(\text{agrw}\)-open sets are denoted by \(\text{agrwC}(X) \) and \(\text{agrwO}(X) \) respectively.

Definition 2.4. [6] A function \(f : (X, \tau) \to (Y, \sigma) \) is said to be \(\alpha \)-closed if \(f(U) \) is an \(\alpha \)-closed set of \((Y, \sigma) \) for every closed set \(U \) of \((X, \tau) \).

Definition 2.5. [10] A function \(f : (X, \tau) \to (Y, \sigma) \) is said to be \(\text{agrw}\)-continuous if \(f^{-1}(V) \) is an \(\text{agrw}\)-closed set of \((X, \tau) \) for every closed set \(V \) of \((Y, \sigma) \).

Definition 2.6. [10] A function \(f : (X, \tau) \to (Y, \sigma) \) is said to be \(\text{agrw}\)-irresolute if \(f^{-1}(V) \) is an \(\text{agrw}\)-closed set of \((X, \tau) \) for every \(\text{agrw}\)-closed set \(V \) of \((Y, \sigma) \).

Definition 2.7. [8] A topological space \((X, \tau) \) is an \(\alpha \)-space if every \(\alpha \)-closed subset of \((X, \tau) \) is closed in \((X, \tau) \).

Definition 2.8. [5] A function \(f : (X, \tau) \to (Y, \sigma) \) has an \(\alpha \)-closed graph if for each \((x, y) \notin G(f) \), there exists an \(\alpha \)-open set \(U \) and an open set \(V \) containing \(x \) and \(y \) respectively such that \((U \times \text{cl}(V)) \cap G(f) = \emptyset \).
Lemma 2.1. [2] Let $A \subseteq Y \subseteq X$, where X is a topological space and Y is open subspace of X. If $A \in RSO(X)$, then $A \in RSO(Y)$.

3. $agrw$-CONTINUOUS FUNCTIONS

Definition 3.1. A function $f : (X, \tau) \to (Y, \sigma)$ is called regular semi-open* (resp. regular semi-closed*) if $f(V)$ is regular semi-open (resp. regular semi-closed) in (Y, σ) for every regular semi-open (resp. regular semi-closed) set V in (X, τ).

Definition 3.2. A function $f : (X, \tau) \to (Y, \sigma)$ is called regular semi-irresolute if $f^{-1}(V)$ is regular semi-open in (X, τ) for every regular semi-open V in (Y, σ).

Proposition 3.1. If A is $agrw$-closed in a α-space (X, τ) and if $f : (X, \tau) \to (Y, \sigma)$ is regular semi-irresolute and α-closed, then $f(A)$ is $agrw$-closed in (Y, σ).

Proof. Let U be any regular semi-open in (Y, σ) such that $f(A) \subseteq U$. Then $A \subseteq f^{-1}(U)$ and by assumption, $\alpha cl(A) \subseteq f^{-1}(U)$. This implies $f(\alpha cl(A)) \subseteq U$ and $f(\alpha cl(A))$ is α-closed. Now, $\alpha cl(f(A)) \subseteq \alpha cl(f(\alpha cl(A))) = f(\alpha cl(A)) \subseteq U$. Therefore $\alpha cl(f(A)) \subseteq U$ and hence $f(A)$ is $agrw$-closed in (Y, σ).

Remark 1. The following examples show that no assumption of the above proposition can be removed.

Example 3.1. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\}$, $Y = \{p, q, r\}$ and $\sigma = \{\emptyset, \{p\}, \{r\}, \{p, r\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by $f(a) = p$, $f(b) = f(c) = r$ and $f(d) = q$. Then the function f is regular semi-irresolute and α-closed but $A = \{a\}$ is not an $agrw$-closed in a α-space (X, τ) and so $f(A)$ is not an $agrw$-closed set in (Y, σ).

Example 3.2. In Example 3.1, let $f : (X, \tau) \to (Y, \sigma)$ be defined by $f(a) = f(c) = r, f(b) = p$ and $f(d) = q$. Then $A = \{a, c\}$ is $agrw$-closed, f is α-closed and X is
\(\alpha \)-space but \(f \) is not regular semi-irresolute and so \(f(A) \) is not an \(\alpha gw \)-closed set in \((Y, \sigma)\).

Example 3.3. In Example 3.1, let \(f : (X, \tau) \to (Y, \sigma) \) be defined by \(f(a) = f(d) = p \) and \(f(b) = f(c) = r \). Then \(A = \{a, d\} \) is \(\alpha gw \)-closed, \(f \) is regular semi-irresolute and \(X \) is \(\alpha \)-space but \(f \) is not \(\alpha \)-closed and so \(f(A) \) is not an \(\alpha gw \)-closed set in \((Y, \sigma)\).

Example 3.4. Let \(X = \{a, b, c, d\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\} \), \(Y = \{p, q, r\} \) and \(\sigma = \{\emptyset, \{p\}, \{r\}, \{p, r\}, Y\} \). Let \(f : (X, \tau) \to (Y, \sigma) \) be defined by \(f(a) = p, f(b) = f(d) = r \) and \(f(c) = q \). Then the function \(f \) is regular semi-irresolute, \(f \) is \(\alpha \)-closed and \(A = \{d\} \) is \(\alpha gw \)-closed but \(X \) is not \(\alpha \)-space and so \(f(A) \) is not an \(\alpha gw \)-closed set in \((Y, \sigma)\).

Theorem 3.1. Let \(f \) be an \(\alpha gw \)-continuous and regular semi-closed* function from a space \((X, \tau)\) to an \(\alpha \)-space \((Y, \sigma)\). Then \(f \) is an \(\alpha gw \)-irresolute function.

Proof. Let \(A \) be an \(\alpha gw \)-open subset in \((Y, \sigma)\) and let \(F \) be any regular semi-closed set in \((X, \tau)\) such that \(F \subseteq f^{-1}(A) \). Then \(f(F) \subseteq A \). Since \(f \) is regular semi-closed*, \(f(F) \) is regular semi-closed. Therefore \(f(F) \subseteq \alpha int(A) \) by Theorem 3.1 [11] and so \(F \subseteq f^{-1}(\alpha int(A)) \). Since \(f \) is \(\alpha gw \)-continuous and \(Y \) is an \(\alpha \)-space, \(f^{-1}(\alpha int(A)) \) is \(\alpha gw \)-open in \((X, \tau)\). Thus \(F \subseteq \alpha int(f^{-1}(\alpha int(A))) \subseteq \alpha int(f^{-1}(A)) \) and so \(f^{-1}(A) \) is \(\alpha gw \)-open in \((X, \tau)\) by Theorem 3.1 [11]. The proof is similar for \(\alpha gw \)-closed set.

Remark 2. The following examples show that no assumption of the above theorem can be removed.

Example 3.5. Let \(X = \{a, b, c, d\}, \tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\} \), \(Y = \{p, q, r\} \) and \(\sigma = \{\emptyset, \{q\}, \{p, q\}, \{q, r\}, Y\} \). Let \(f : (X, \tau) \to (Y, \sigma) \) be defined by \(f(a) = f(b) = r, f(c) = q \) and \(f(d) = p \). Then the function \(f \) is \(\alpha gw \)-continuous and \(Y \) is \(\alpha \)-space but \(f \) is not regular semi-closed* and so \(f \) is not \(\alpha gw \)-irresolute.
Example 3.6. Let $X = Y = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be an identity map. Then the function f is \agrw-continuous and regular semi-closed but Y is not an α-space and so f is not \agrw-irresolute.

Example 3.7. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\}$, $Y = \{p, q, r\}$ and $\sigma = \{\emptyset, \{p\}, \{r\}, \{p, r\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be defined by $f(a) = f(b) = p, f(b) = r$ and $f(c) = q$. Then the function f is regular semi-closed but Y is α-space but f is not \agrw-continuous and so f is not \agrw-irresolute.

Corollary 3.1. If $f : (X, \tau) \rightarrow (Y, \sigma)$ is \agrw-continuous and regular semi-closed and if A is \agrw-closed (or \agrw-open) subset of an α-space (Y, σ), then $f^{-1}(A)$ is \agrw-closed (or \agrw-open) in (X, τ).

Corollary 3.2. Let $(X, \tau), (Z, \eta)$ be a topological spaces and (Y, σ) be an α-space. If $f : (X, \tau) \rightarrow (Y, \sigma)$ is \agrw-continuous and regular semi-closed and $g : (Y, \sigma) \rightarrow (Z, \eta)$ is \agrw-continuous then $g \circ f : (X, \tau) \rightarrow (Z, \eta)$ is \agrw-continuous.

Proof. Let F be any closed set in (Z, η). Since g is \agrw-continuous, $g^{-1}(F)$ is \agrw-closed. By assumption and by Theorem 3.1, $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ is \agrw-closed in (X, τ) and so $g \circ f$ is \agrw-continuous.

Proposition 3.2. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ is \agrw-continuous then for each point x in X and each open set V in Y with $f(x) \in V$, there is an \agrw-open set U in X such that $x \in U$ and $f(U) \subseteq V$.

Proof. Let V be an open set in (Y, σ) and let $f(x) \in V$. Then $x \in f^{-1}(V) \in \agrw O(X)$, since f is \agrw-continuous. Let $U = f^{-1}(V)$. Then $x \in U$ and $f(U) \subseteq V$.

Remark 3. The converse of the above proposition need not be true as seen from the following example.
Example 3.8. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{e\}, \{a, c\}, X\}$, $Y = \{p, q, r, s\}$ and $\sigma = \{\emptyset, \{p\}, \{q\}, \{p, q\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by $f(a) = p$, $f(b) = q$ and $f(c) = r$. Then for each point x in X and each open set V in Y with $f(x) \in V$, there is an α-grw-open set U in X such that $x \in U$ and $f(U) \subseteq V$ but f is not α-grw-continuous.

The following theorem is the Pasting lemma for α-grw-continuous functions.

Theorem 3.2. Let $X = A \cup B$, where A and B are α-grw-closed and regular open in X. Let $f : (A, \tau_A) \to (Y, \sigma)$ and $g : (B, \tau_B) \to (Y, \sigma)$ be α-grw-continuous such that $f(x) = g(x)$ for every $x \in A \cap B$. Then the combination $f \circ g : (X, \tau) \to (Y, \sigma)$ defined by $(f \circ g)(x) = f(x)$ if $x \in A$ and $(f \circ g)(x) = g(x)$ if $x \in B$ is α-grw-continuous.

Proof. Let U be any closed set in Y. Then $(f \circ g)^{-1}(U) = [(f \circ g)^{-1}(U) \cap A] \cup [(f \circ g)^{-1}(U) \cap B] = f^{-1}(U) \cup g^{-1}(U) = C \cup D$, where $C = f^{-1}(U)$ and $D = g^{-1}(U)$. Since f is α-grw-continuous, we have C is α-grw-closed in (A, τ_A) and also since A is α-grw-closed and regular open in X, C is α-grw-closed in X, by Proposition 7 [4]. Similarly, D is α-grw-closed in X and by Theorem 3.19[9], $(f \circ g)^{-1}(U) = C \cup D$ is α-grw-closed in X. Hence $f \circ g$ is α-grw-continuous.

Definition 3.3. A function $f : (X, \tau) \to (Y, \sigma)$ has an α-grw-closed graph if for each $(x, y) \notin G(f)$, there exists an α-grw-open set U and an open set V containing x and y respectively such that $(U \times \text{cl}(V)) \cap G(f) = \emptyset$.

Example 3.9. Let $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, \{a\}, X\}$ and $Y = \{p, q, r\}$ with topology $\sigma = \mathcal{P}(Y)$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by $f(a) = p$, $f(b) = q$ and $f(c) = r$. Then f has an α-grw-closed graph.

Proposition 3.3. A function with α-closed graph has an α-grw-closed graph.
Proof. Let \(f : (X, \tau) \to (Y, \sigma) \) has an \(\alpha \)-closed graph. Then there exists an \(\alpha \)-open set \(U \) and an open set \(V \) containing \(x \) and \(y \) respectively if for each \((x, y) \in G(f) \) such that \((U \times \text{cl}(V)) \cap G(f) = \emptyset \). Since every \(\alpha \)-open set is an \(\alpha grw \)-open set[9]. Therefore \(U \) is an \(\alpha \)-open set. Hence \(f \) has an \(\alpha grw \)-closed graph.

Remark 4. The converses of the above proposition need not be true in general. In Example 3.9, the function \(f \) has an \(\alpha grw \)-closed graph but not has an \(\alpha \)-closed graph.

Lemma 3.1. The function \(f : (X, \tau) \to (Y, \sigma) \) has an \(\alpha grw \)-closed graph if and only if for each \((x, y) \in X \times Y \) such that \(f(x) \neq y \), there exist an \(\alpha grw \)-open set \(U \) and an open set \(V \) containing \(x \) and \(y \) respectively, such that \(f(U) \cap \text{cl}(V) = \emptyset \).

Proof. Necessity. Let for each \((x, y) \in X \times Y \) such that \(f(x) \neq y \). Then there exist an \(\alpha grw \)-open set \(U \) and an open set \(V \) containing \(x \) and \(y \), respectively, such that \((U \times \text{cl}(V)) \cap G(f) = \emptyset \), since \(f \) has an \(\alpha grw \)-closed graph. Hence for each \(x \in U \) and \(y \in \text{cl}(V) \) with \(y \neq f(x) \), we have \(f(U) \cap \text{cl}(V) = \emptyset \).

Sufficiency. Let \((x, y) \notin G(f) \). Then \(y \neq f(x) \) and so there exist an \(\alpha grw \)-open set \(U \) and an open set \(V \) containing \(x \) and \(y \), respectively, such that \(f(U) \cap \text{cl}(V) = \emptyset \). This implies, for each \(x \in U \) and \(y \in \text{cl}(V) \), \(f(x) \neq y \). Therefore \((U \times \text{cl}(V)) \cap G(f) = \emptyset \). Hence \(f \) has an \(\alpha grw \)-closed graph.

Theorem 3.3. If \(f \) is an \(\alpha grw \)-continuous function from a space \(X \) into a Hausdorff space \(Y \), then \(f \) has an \(\alpha grw \)-closed graph.

Proof. Let \((x, y) \notin G(f) \). Then \(y \neq f(x) \). Since \(Y \) is Hausdorff space, there exist two disjoint open sets \(V \) and \(W \) such that \(f(x) \in W \) and \(y \in V \). Since \(f \) is \(\alpha grw \)-continuous, there exists an \(\alpha grw \)-open set \(U \) such that \(x \in U \) and \(f(U) \subseteq W \) by Proposition 3.2. Thus \(f(U) \subseteq Y - \text{cl}(V) \). Therefore \(f(U) \cap \text{cl}(V) = \emptyset \) and so \(f \) has an \(\alpha grw \)-closed graph.
Theorem 3.4. If f is a surjective function with an αgrw-closed graph from a space X onto a space Y, then Y is Hausdorff.

Proof. Let y_1 and y_2 be two distinct points in Y. Then there exists a point $x_1 \in X$ such that $f(x_1) = y_1 \neq y_2$. Thus $(x_1, y_2) \notin G(f)$. Since f has an αgrw-closed graph, there exist an αgrw-open set U and an open set V containing x_1 and y_2, respectively, such that $f(U) \cap \text{cl}(V) = \emptyset$ and so $f(x_1) \notin \text{cl}(V)$. Hence Y is Hausdorff.

Proposition 3.4. The space X is Hausdorff if and only if the identity mapping $f : X \to X$ has an αgrw-closed graph.

Proof. Obvious from Theorem 3.3 and 3.4.

References

(1) **DEPARTMENT OF MATHEMATICS, AKSHAYA COLLEGE OF ENGINEERING AND TECHNOLOGY, COIMBATORE, TAMIL NADU, INDIA.**

E-mail address: selvanayaki.nataraj@gmail.com

(2) **DEPARTMENT OF MATHEMATICS, GOVERNMENT ARTS COLLEGE, COIMBATORE, TAMILNADU, INDIA.**

E-mail address: gnanamilango@yahoo.co.in